利用轴对称求最短距离问题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

利用轴对称求最短距离问题基本题引入:如图(1),要在公路道a上修建一个加油站,有A,B两人要去加油站加油。加油站修在公路道的什么地方,可使两人到加油站的总路程最短?你可以在a上找几个点试一试,能发现什么规律?思路分析:如图2,我们可以把公路a近似看成一条直线,问题就是要在a上找一点M,使AM与BM的和最小。设A′是A的对称点,本问题也就是要使A′M与BM的和最小。在连接A′B的线中,线段A′B最短。因此,线段A′B与直线a的交点C的位置即为所求。如图3,为了证明点C的位置即为所求,我们不妨在直线a上另外任取一点N,连接AN、BN、A′N。因为直线a是A,A′的对称轴,点M,N在a上,所以AM=A′M,AN=A′N。∴AM+BM=A′M+BM=A′B在△A′BN中,∵A′B<A′N+BN∴AM+BM<AN+BN即AM+BM最小。教师要充分关注学生的学习过程,遵循学生认知规律,使学生不仅获得数学基础知识、基本技能,更要获得数学思想和观念,形成良好的数学思维品质。同时每年的中考题也千变万化,为了提高学生的应对能力,除了进行专题训练外,还要多归纳多总结,将一类问题集中呈现给学生。a·A·B图1·A·Ba·A′M图2·A·Ba·A′MN图3一、三角形中的轴对称题目1:如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边上的中点,E是AB边上的一动点,则EC+ED的最小值是__点评:本题只要把点C、D看成基本题中的A、B两镇,把线段AB看成燃气管道a,问题就可以迎刃而解了,本题只是改变了题目背景,所考察的知识点并没有改变。二、四边形中的轴对称题目:2:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的动点,则DN+MN的最小值为多少?点评:此题也是运用到正方形是轴对称图形这一特殊性质,点D关于直线AC的对称点正好是点B,最小值为MB=10。三、圆中的轴对称题目3:已知:如图,已知点A是⊙O上的一个六等分点,点B是弧AN的中点,点P是半径ON上的动点,若⊙O的半径长为1,求AP+BP的最小值。ACBEDMADBCN第1题图第2题图hAB第4题图1点评:这道题也运用了圆的对称性这一特殊性质。点B的对称点B′在圆上,AB′交ON于点p′,由∠AON﹦60°,∠B′ON﹦30°,∠AOB′﹦90°,半径长为1可得AB′﹦2。当点P运动到点p′时,此时AP+BP有最小值为2四、立体图形中的轴对称题目5如图1是一个没有上盖的圆柱形食品盒,一只蚂蚁在盒外表面的A处,它想吃到盒内表面对侧中点B处的食物,已知盒高h=10cm,底面圆的周长为32cm,A距离下底面3cm.请你帮小蚂蚁算一算,为了吃到食物,它爬行的最短路程为cm.点评:如图2,此题是一道立体图形问题需要转化成平面问题来解决,将圆柱的侧面展开得矩形EFGH,作出点B关于EH的对称点B′,作AC⊥GH于点C,连接AB′。在Rt△AB′C中,AC﹦16,B′C﹦12,求得AB′﹦20,则蚂蚁爬行的最短路程为20cm。综上所述,引导学生在熟练掌握书本例题、习题的基础上,进行科学的变式训练,对巩固基础、提高能力有着至关重要的作用。更重要的是,变式训练能培养和发展学生的求异思维、发散思维、逆向思维,进而培养学生全方位、多角度思考问题的能力,有助于提高学生分析问题、解决问题的能力。EFGB′AC·BH第4题图2第3题图11.(2015南宁)如图6,AB是⊙O的直径,AB=8,点M在⊙O上,OMAB20,N是弧MB的中点,P是直径AB上的一动点,若MN=1,则PMN周长的最小值为()(A)4(B)5(C)6(D)79.(2015资阳)如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是A.13cmB.261cmC.61cmD.234cm跟踪练习1:如图7,已知点A是半圆上一个三等分点,点B是弧AN的中点,点P是半径ON上的动点,若⊙O的半径长为1,则AP+BP的最小值为_______________。图73、变形3:点A的坐标为(0,2)点,点B是半径为的⊙B的圆心,点B的坐标为(4,2),请你探索在x轴上是否存在一个点C以及在⊙B上是否存在一个点D,使得AC+CD最小,若存在,请你在图中作出点C和点D,并求出点C、D的坐标和AC+CD的最小值;若不图6PONMBA图5存在请说明理由。理解转化题意:点A点B在X轴的同旁,作点A关于x轴的对称点E,连结BE交X轴于点C,,交⊙B于点D,点C点D即为所求。解:作点A关于x轴的对称点E,作直线BE交x轴于点C,交⊙B于点D,连接AC,则点C、D即为所求∵A(0,2)∴E(0,-2)设BE的数学表达式为y=kx+b,则∴k=1∴y=x-2∴C(2,0)过点B作BG⊥x轴于点G则CG=4-2=2BG=2∴BC=2BD=∴CD=∴AC+CD=2+=3。五、延伸拓展双重对称24.(12分)(2015•德州)已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.考点:二次函数综合题.菁优网版权所有分析:(1)利用根据与系数的关系得出α+β=,αβ=﹣2,进而代入求出m的值即可得出答案;(2)利用轴对称求最短路线的方法,作点D关于y轴的对称点D′,点E关于x轴的对称点E′,得出四边形DNME的周长最小为:D′E′+DE,进而利用勾股定理求出即可;(3)利用平行四边形的判定与性质结合P点纵坐标为±4,进而分别求出即可.解答:解:(1)由题意可得:α,β是方程﹣mx2+4x+2m=0的两根,由根与系数的关系可得,α+β=,αβ=﹣2,∵=﹣2,∴=﹣2,即=﹣2,解得:m=1,故抛物线解析式为:y=﹣x2+4x+2;(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,∵y=﹣x2+4x+2=﹣(x﹣2)2+6,∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,∴E点坐标为:(4,2),作点D关于y轴的对称点D′,点E关于x轴的对称点E′,则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),连接D′E′,交x轴于M,交y轴于N,此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,则D′E′===10,设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,∴DE===2,∴四边形DNME的周长最小值为:10+2;(3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,∴PH=DG=4,∴|y|=4,∴当y=4时,﹣x2+4x+2=4,解得:x1=2+,x2=2﹣,当y=﹣4时,﹣x2+4x+2=﹣4,解得:x3=2+,x4=2﹣,故P点的坐标为;(2﹣,4),(2+,4),(2﹣,﹣4),(2+,﹣4).点评:此题主要考查了平行四边形的性质以及勾股定理、利用轴对称求最短路线等知识,利用数形结合以及分类讨论得出P点坐标是解题关键.六、延伸拓展能力提高22.(14分)(2015•日照)如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?考点:二次函数综合题;线段的性质:两点之间线段最短;矩形的判定与性质;轴对称的性质;相似三角形的判定与性质;锐角三角函数的定义..专题:压轴题.分析:(Ⅰ)只需把A、C两点的坐标代入y=x2+mx+n,就可得到抛物线的解析式,然后求出直线AB与抛物线的交点B的坐标,过点B作BH⊥x轴于H,如图1.易得∠BCH=∠ACO=45°,BC=,AC=3,从而得到∠ACB=90°,然后根据三角函数的定义就可求出tan∠BAC的值;(Ⅱ)(1)过点P作PG⊥y轴于G,则∠PGA=90°.设点P的横坐标为x,由P在y轴右侧可得x>0,则PG=x,易得∠APQ=∠ACB=90°.若点G在点A的下方,①当∠PAQ=∠CAB时,△PAQ∽△CAB.此时可证得△PGA∽△BCA,根据相似三角形的性质可得AG=3PG=3x.则有P(x,3﹣3x),然后把P(x,3﹣3x)代入抛物线的解析式,就可求出点P的坐标②当∠PAQ=∠CBA时,△PAQ∽△CBA,同理,可求出点P的坐标;若点G在点A的上方,同理,可求出点P的坐标;(2)过点E作EN⊥y轴于N,如图3.易得AE=EN,则点M在整个运动中所用的时间可表示为+=DE+EN.作点D关于AC的对称点D′,连接D′E,则有D′E=DE,D′C=DC,∠D′CA=∠DCA=45°,从而可得∠D′CD=90°,DE+EN=D′E+EN.根据两点之间线段最短可得:当D′、E、N三点共线时,DE+EN=D′E+EN最小.此时可证到四边形OCD′N是矩形,从而有ND′=OC=3,ON=D′C=DC.然后求出点D的坐标,从而得到OD、ON、NE的值,即可得到点E的坐标.解答:解:(Ⅰ)把A(0,3),C(3,0)代入y=x2+mx+n,得,解得:.∴抛物线的解析式为y=x2﹣x+3.联立,解得:或,∴点B的坐标为(4,1).过点B作BH⊥x轴于H,如图1.∵C(3,0),B(4,1),∴BH=1,OC=3,OH=4,CH=4﹣3=1,∴BH=CH=1.∵∠BHC=90°,∴∠BCH=45°,BC=.同理:∠ACO=45°,AC=3,∴∠ACB=180°﹣45°﹣45°=90°,∴tan∠BAC===;(Ⅱ)(1)存在点P,使得以A,P,Q为顶点的三角形与△ACB相似.过点P作PG⊥y轴于G,则∠PGA=90°.设点P的横坐标为x,由P在y轴右侧可得x>0,则PG=x.∵PQ⊥PA,∠ACB=90°,∴∠APQ=∠ACB=90°.若点G在点A的下方,①如图2①,当∠PAQ=∠CAB时,则△PAQ∽△CAB.∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,∴△PGA∽△BCA,∴==.∴AG=3PG=3x.则P(x,3﹣3x).把P(x,3﹣3x)代入y=x2﹣x+3,得x2﹣x+3=3﹣3x,整理得:x2+x=0解得:x1=0(舍去),x2=﹣1(舍去).②如图2②,当∠PAQ=∠CBA时,则△PAQ∽△CBA.同理可得:AG=PG=x,则P(x,3﹣x),把P(x,3﹣x)代入y=x2﹣x+3,得x2﹣x+3=3﹣x,整理得:x2﹣x=0解得:x1=0(舍去),x2=,∴P(,);若点G在点A的上方,①当∠PAQ=∠CAB时,则△PAQ∽△CAB,同理可得:点P的坐标为(11,36).②当∠PAQ=∠CBA时,则△PAQ∽△CBA.同理可得:点P的坐标为P(,).综上所述:满足条件的点P的坐标为(11,36)、(,)、(,);(2)过点E作EN⊥y轴于N,如图3.在Rt△

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功