《机电一体化系统设计》第5章-检测系统设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第5章检测系统设计5.1概述5.2线位移检测传感器5.3角位移检测传感器5.4速度、加速度传感器5.5测力传感器5.6传感器的正确选择和使用5.7检测信号的采集与处理5.1概述一、定义及分类:1、定义:传感器是将力、温度、位移、速度等量转换成电信号的元件。“传感器技术是机电一体化的第一基础”2、分类按能量变换的功能分:按输出的信号分:物理传感器化学传感器计数型(二次型+计数型)电压,电流型(热电偶,Cds电池)电感,电容型(可变电容)有接点型(微动开关,接触开关,行程开关)传感器电阻型(电位器,电阻应变片)非电量型二值型电量无接点型(光电开关,接近开关)模拟型数字型代码型(旋转编码器,磁尺)二、传感器的基本特性1.传感器的静特性传感器的静态特性是指当被测量处于稳定状态下,传感器的输入与输出值之间的关系。传感器静态特性的主要技术指标有:线性度、灵敏度、迟滞和重复性等。(1).线性度传感器的线性度是指传感器实际输出—输入特性曲线与理论直线之间的最大偏差与输出满度值之比,即100%ΔmaxγFSyL二、传感器的基本特性(2).灵敏度传感器的灵敏度是指传感器在稳定标准条件下,输出量的变化量与输入量的变化量之比,即(3).迟滞传感器在正(输入量增大)反(输入量减小)行程中,输出——输入特性曲线不重合的程度称为迟滞,迟滞误差一般以满量程输出的百分数表示xyS0%100FSmyHH二、传感器的基本特性(4).重复性传感器在同一条件下,被测输入量按同一方向作全量程连续多次重复测量时,所得输出——输入曲线的不一致程度,称重复性。重复性误差用满量程输出的百分数表示,即近似计算100%FSmRyRγ精确计算13~22nyyyiFSR二、传感器的基本特性5.分辨力传感器能检测到的最小输入增量称分辨力,在输入零点附近的分辨力称为阈值。6.零漂传感器在零输入状态下,输出值的变化称为零漂,零漂可用相对误差表示,也可用绝对误差表示。2.传感器的动态特性传感器能测量动态信号的能力用动态特性表示。动态特性是指传感器测量动态信号时,输出对输入的响应特性。传感器动态特性的性能指标可以通过时域、频域以及试验分析的方法确定,其动态特性参数如:最大超调量、上升时间、调整时间、频率响应范围、临界频率等。二、传感器的基本特性1.新型传感器的开发鉴于传感器的工作机理是基于各种效应和定律,由此启发人们进一步发现新现象、采用新原理、开发新材料、采用新工艺,并以此研制出具有新原理的新型物性型传感器,这是发展高性能、多功能、低成本和小型化传感器的重要途径。总之,传感器正经历着从以结构型为主转向以物性型为主的过程。三、传感器的发展方向2.传感器的集成化和多功能化随着微电子学、微细加工技术和集成化工艺等方面的发展,出现了多种集成化传感器。这类传感器,或是同一功能的多个敏感元件排列成线性、面型的阵列型传感器;或是多种不同功能的敏感元件集成一体,成为可同时进行多种参数测量的传感器;或是传感器与放大、运算、温度补偿等电路集成一体具有多种功能——实现了横向和纵向的多功能。三、传感器的发展方向3.传感器的智能化“电五官”与“电脑”的相结合,就是传感器的智能化。智能化传感器不仅具有信号检测、转换功能,同时还具有记忆、存储、解析、统计处理及自诊断、自校准、自适应等功能。如进一步将传感器与计算机的这些功能集成于同一芯片上,就成为智能传感器。三、传感器的发展方向5.2线位移检测传感器一、光栅位移传感器二、感应同步器三、磁栅位移传感器一、光栅位移传感器32411.标尺光栅2.指示光栅3.光电元件4.光源1、光栅的构造:2、工作原理一、光栅位移传感器ddffddBffddW/2WθddW/2指示光栅标尺光栅把两块栅距W相等的光栅平行安装,且让它们的刻痕之间有较小的夹角θ时,这时光栅上会出现若干条明暗相间的条纹,这种条纹称莫尔条纹,它们沿着与光栅条纹几乎垂直的方向排列,如图所示。莫尔条纹具有如下特点:1.莫尔条纹的位移与光栅的移动成比例。光栅每移动过一个栅距W,莫尔条纹就移动过一个条纹间距B2.莫尔条纹具有位移放大作用。莫尔条纹的间距B与两光栅条纹夹角之间关系为3.莫尔条纹具有平均光栅误差的作用。一、光栅位移传感器WWB2sin2通过光电元件,可将莫尔条纹移动时光强的变化转换为近似正弦变化的电信号,如图所示。一、光栅位移传感器U0UW/2oUm2W3W/2WxWxUUUm2sin0其电压为:将此电压信号放大、整形变换为方波,经微分转换为脉冲信号,再经辨向电路和可逆计数器计数,则可用数字形式显示出位移量,位移量等于脉冲与栅距乘积。测量分辨率等于栅距。一、光栅位移传感器1.感应同步器结构二、感应同步器sincos节距2τ(2mm)节距τ(0.5mm)4l绝缘粘胶铜箔铝箔耐切削液涂层基板(钢、铜)滑尺定尺包括定尺和滑尺,用制造印刷线路板的腐蚀方法在定尺和滑尺上制成节距T(一般为2mm)的方齿形线圈。定尺绕组是连续的,滑尺上分布着两个励磁绕组,分别称为正弦绕组和余弦绕组。当正弦绕组与定尺绕组相位相同时,余弦绕组与定尺绕组错开1/4节距。滑尺和定尺相对平行安装,其间保持一定间隙(0.05~0.2mm)。二、感应同步器2.感应同步器的工作原理在滑尺的绕组中,施加频率为f(一般为2~10kHz)的交变电流时,定尺绕组感应出频率为f的感应电动势。感应电动势的大小与滑尺和定尺的相对位置有关。设正弦绕组供电电压为Us,余弦绕组供电电压为Uc,移动距离为x,节距为T,则正弦绕组单独供电时,在定尺上感应电势为二、感应同步器cos360cos2ssKUTxKUUo'余弦绕组单独供电所产生的感应电势为二、感应同步器sin360sin2ccKUTxKUUo由于感应同步器的磁路系统可视为线性,可进行线性叠加,所以定尺上总的感应电势为sincos222csKUKUUUU'式中:K——定尺与滑尺之间的耦合系数;——定尺与滑尺相对位移的角度表示量(电角度)T——节距,表示直线感应同步器的周期,标准式直线感应同步器的节距为2mm。利用感应电压的变化可以求得位移X,从而进行位置检测。二、感应同步器TxTx2360)(o3.测量方法根据对滑尺绕组供电方式的不同,以及对输出电压检测方式的不同,感应同步器的测量方式有鉴相式和鉴幅式两种工作法。二、感应同步器(1)鉴相式工作法滑尺的两个励磁绕组分别施加相同频率和相同幅值,但相位相差90o的两个电压,设二、感应同步器tmsUUsintUUmccos2'22UUU)sin(sincoscossintKUtKUtKUmmm则从上式可以看出,只要测得相角,就可以知道滑尺的相对位移x:Txo360二、感应同步器2.鉴幅工作法在滑尺的两个励磁绕组上分别施加相同频率和相同相位,但幅值不等的两个交流电压:tmUUssinsintmUUcsincostKUUUUmsin)sin(222'则:由上式知,感应电势的幅值随着滑尺的移动作正弦变化。因此,可以通过测量感应电动势的幅值来测得定尺和滑尺之间的相对位移。1.磁栅式位移传感器的结构三、磁栅位移传感器输出信号励磁电源654SS3NNSSSλ7NN1SNN200abx1—磁性膜2—基体3—磁尺4—磁头5—铁芯6—励磁绕组7—拾磁绕组2.原理:在用软磁材料制成的铁芯上绕有两个绕组,一个为励磁绕组,另一个为拾磁绕组,将高频励磁电流通入励磁绕组时,当磁头靠近磁尺时在拾磁线圈中感应电压为:三、磁栅位移传感器txUUsin2sin0U0——输出电压系数;——磁尺上磁化信号的节距;χ——磁头相对磁尺的位移;ω——励磁电压的角频率。式中:在实际应用中,需要采用双磁头结构来辨别移动的方向3.测量方式(1)鉴幅测量方式如前所述,磁头有两组信号输出,将高频载波滤掉后则得到相位差为π/2的两组信号两组磁头相对于磁尺每移动一个节距发出一个正(余)弦信号,经信号处理后可进行位置检测。这种方法的检测线路比较简单,但分辨率受到录磁节距λ的限制,若要提高分辨率就必须采用较复杂的信频电路,所以不常采用。三、磁栅位移传感器xUU2sin01xUU2cos022.鉴相测量方式将一组磁头的励磁信号移相90°,则得到输出电压为在求和电路中相加,则得到磁头总输出电压为三、磁栅位移传感器txUUcos2sin01txUUsin2cos02txUU2sin0则合成输出电压U的幅值恒定,而相位随磁头与磁尺的相对位置χ变化而变。读出输出信号的相位,就可确定磁头的位置。5.3角位移检测传感器一、旋转变压器二、光电编码器1.结构如图所示旋转变压器一般做成两极电机的形式。在定子上有激磁绕组和辅助绕组,它们的轴线相互成90°。在转子上有两个输出绕组——正弦输出绕组和余弦输出绕组,这两个绕组的轴线也互成90°,一般将其中一个绕组(如Z1、Z2)短接。一、旋转变压器Z12ZDD21UD13U24DZ3U3Z42.原理旋转变压器在结构上与两相绕组式异步电机相似,由定子和转子组成。当以一定频率(频率通常为400Hz、500Hz、1000Hz及5000Hz等几种)的激磁电压加于定子绕组时,转子绕组的电压幅值与转子转角成正弦、余弦函数关系,或在一定转角范围内与转角成正比关系。前一种旋转变压器称为正余弦旋转变压器,适用于大角位移的绝对测量;后一种称为线性旋转变压器,适用于小角位移的相对测量。一、旋转变压器3.测量方式当定子绕组中分别通以幅值和频率相同、相位相差为90°的交变激磁电压时,便可在转子绕组中得到感应电势U3,根据线性叠加原理,U3值为激磁电压U1和U2的感应电势之和,即一、旋转变压器tUUmsin1tUUmcos2)cos()90sin(sin213tkUkUkUUmo式中:k=w1/w2——旋转变压器的变压比w1、w2——转子、定子绕组的匝数线性旋转变压器实际上也是正余弦旋转变压器,不同的是线性旋转变压器采用了特定的变压比k和接线方式,如右图。这样使得在一定转角范围内(一般为±60°),其输出电压和转子转角θ成线性关系。此时输出电压为一、旋转变压器cos1sin13kkUU3DZ2U11DZ43D24DU3Z1Z1.增量式编码器结构二、光电编码器2.增量式编码器工作原理鉴向盘与主码盘平行,并刻有a、b两组透明检测窄缝,它们彼此错开1/4节距,以使A、B两个光电变换器的输出信号在相位上相差90°。工作时,鉴向盘静止不动,主码盘与转轴一起转动,光源发出的光投射到主码盘与鉴向盘上。当主码盘上的不透明区正好与鉴向盘上的透明窄缝对齐时,光线被全部遮住,光电变换器输出电压为最小;当主码盘上的透明区正好与鉴向盘上的透明窄缝对齐时,光线全部通过,光电变换器输出电压为最大。主码盘每转过一个刻线周期,光电变换器将输出一个近似的正弦波电压,且光电变换器A、B的输出电压相位差为90°。经逻辑电路处理就可以测出被测轴的相对转角和转动方向。二、光电编码器3.绝对式编码器原理绝对式编码器是把被测转角通过读取码盘上的图案信息直接转换成相应代码的检测元件。编码盘有光电式、接触式和电磁式三种。光电式码盘是目前应用较多的一种,它是在透明材料的圆盘上精确地印制上二进制编码。如图所示为四位二进制的码盘,码盘上各圈圆环分别代表一位二进制的数字码道,在同一个码道上印制黑白等间隔图案,形成一套编码二、光电编码器黑色不透光区和白色透光区分别代表二进制的“0”和“1”。在一个四位光电码盘上,有四圈数字码道,每一个码道表示二进制的一位,里侧是高位,外侧是低位,在360°范围内可编数码数为24=16个。二、光电编码器11000011010101100111010

1 / 85
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功