1一次函数题型一、点的坐标方法:x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(|m|,-n)在第____象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为______________________;3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_______,b=_________;若A,B关于y轴对称,则a=_______,b=__________;若若A,B关于原点对称,则a=_______,b=_________;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第______象限。题型二、关于点的距离的问题方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;若AB∥x轴,则(,0),(,0)ABAxBx的距离为ABxx;若AB∥y轴,则(0,),(0,)ABAyBy的距离为AByy;点B(2,-2)到x轴的距离是_________;到y轴的距离是____________;1、点C(0,-5)到x轴的距离是_________;到y轴的距离是____________;到原点的距离是____________;2、点D(a,b)到x轴的距离是_________;到y轴的距离是____________;到原点的距离是____________;3、已知点P(3,0),Q(-2,0),则PQ=__________,已知点110,,0,22MN,则MQ=________;2,1,2,8EF,则EF两点之间的距离是__________;已知点G(2,-3)、H(3,4),则G、H两点之间的距离是_________;4、两点(3,-4)、(5,a)间的距离是2,则a的值为__________;5、已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且∠ACB=90°,则C点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。☆A与B成正比例A=kB(k≠0)1、当k_____________时,2323ykxx是一次函数;2、当m_____________时,21345mymxx是一次函数;3、当m_____________时,21445mymxx是一次函数;题型四、函数图像及其性质☆一次函数y=kx+b(k≠0)中k、b的意义:k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的,也表示直线在y轴上的。☆同一平面内,不重合的两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:当时,两直线平行。当时,两直线相交。☆特殊直线方程:X轴:直线Y轴:直线与X轴平行的直线与Y轴平行的直线2一、三象限角平分线二、四象限角平分线1、对于函数y=5x+6,y的值随x值的减小而___________。2、对于函数1223yx,y的值随x值的________而增大。3、一次函数y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是__________。4、直线y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是_________。5、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_______象限。6、无论m为何值,直线y=x+2m与直线y=-x+4的交点不可能在第______象限。7、已知一次函数(1)当m取何值时,y随x的增大而减小?(2)当m取何值时,函数的图象过原点?题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。☆已知是直线或一次函数可以设y=kx+b(k≠0);☆若点在直线上,则可以将点的坐标代入解析式构建方程。1、若函数y=3x+b经过点(2,-6),求函数的解析式。2、直线y=kx+b的图像经过A(3,4)和点B(2,7),3、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。题型六、平移方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。直线y=kx+b向左平移2向上平移3=y=k(x+2)+b+3;(“左加右减,上加下减”)。1.直线y=5x-3向左平移2个单位得到直线。2.直线y=-x-2向右平移2个单位得到直线3.直线y=21x向右平移2个单位得到直线4.直线y=223x向左平移2个单位得到直线5.直线y=2x+1向上平移4个单位得到直线6.直线y=-3x+5向下平移6个单位得到直线7.直线xy31向上平移1个单位,再向右平移1个单位得到直线。8.直线143xy向下平移2个单位,再向左平移1个单位得到直线________。9.过点(2,-3)且平行于直线y=2x的直线是_________。10.过点(2,-3)且平行于直线y=-3x+1的直线是___________.题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;31、直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。2、已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB(1)求两个函数的解析式;(2)求△AOB的面积;6.如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。【一次函数习题】一、填空题1.已知函数1231xyx,x=__________时,y的值时0,x=______时,y的值是1;x=_______时,函数没有意义.2.已知253xyx,当x=2时,y=_________.3.在函数23xyx中,自变量x的取值范围是__________.4.一次函数y=kx+b中,k、b都是,且k,自变量x的取值范围是,当k,b时它是正比例函数.5.已知82)3(mxmy是正比例函数,则m.6.函数nmxmyn12)2(,当m=,n=时为正比例函数;当m=,n=时为一次函数.7.当直线y=2x+b与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x轴的交点坐标是____________;与y轴的交点坐标是_____________.9.已知点A坐标为(-1,-2),B点坐标为(1,-1),C点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.11.直线y=kx+b与直线y=32x平行,且与直线y=312x交于y轴上同一点,则该直线的解析式为________________________________.BA1234043214二、选择题:12.下列函数中自变量x的取值范围是x≥5的函数是()A.5yxB.15yxC.225yxD.55yxx13.下列函数中自变量取值范围选取错误..的是()A.2yxx中取全体实数B.1y=中x≠0x-1C.1y=中x≠-1x+1D.11yxx中≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升。如果每升汽油2.6元,求油箱内汽油的总价y(元)与x(升)之间的函数关系是()A.2.6(020yxx≤≤)B.2.626(030yxx)C.2.610(020yxx≤)D.2.626(020yxx≤≤)15.在某次实验中,测得两个变量m和v之间的4组对应数据如下表.则m与v之间的关系最接近于下列各关系式中的()A.v=2mB.v=m2+1C.v=3m-116.已知水池的容量为50米3,每时灌水量为n米3,灌满水所需时间为t(时),那么t与n之间的函数关系式是()A.t=50nB.t=50-nC.t=50nD.t=50+n17.下列函数中,正比例函数是:()A.25yxB.25yx-1C.245yxD.25yx18.下列说法中不正确的是()A.一次函数不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数19.已知一次函数y=kx+b,若当x增加3时,y减小2,则k的值是()A.32B.23C.32D.2320.小明的父亲饭后出去散步,从家走20分钟到一个离家900米的报亭,看10分钟报纸后,用15分钟返回家里.下面四个图象中,表示小明父亲的离家距离与时间之间关系的是()A.B.C.D.21.在直线y=12x+12且到x轴或y轴距离为1的点有()个5xyB0AA.1B.2C.3D.422.已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k0,b0;②k0,b0;③k0,b0;④k0,b0.其中正确的有()A.1个B.2个C.3个D.4个23.若点(-4,y1),(2,y2)都在直线y=1xt3上,则y1与y2的大小关系是()A.y1y2B.y1=y2C.y1y2D.无法确定三、解答题:24.某工人上午7点上班至11点下班,一开始他用15分钟做准备工作,接着每隔15分钟加工完1个零件.(1)、求他在上午时间内y(时)与加工完零件x(个)之间的函数关系式.(2)、他加工完第一个零件是几点?(3)、8点整他加工完几个零件?(4)、上午他可加工完几个零件?25.已知直线y=12x+1与直线a关于y轴对称,在同一坐标系中画出它们的图象,并求出直线a的解析式.26.已知点Q与P(2,3)关于x轴对称,一个一次函数的图象经过点Q,且与y轴的交点M与原点距离为5,求这个一次函数的解析式.27.如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式.28.在同一直角坐标系中,画出一次函数y=-x+2与y=2x+2的图象,并求出这两条直线与x轴围成的三角形的面积与周长.29.某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止.结合风速与时间的图像,回答下列问题:(1)在y轴()内填入相应的数值;(2)沙尘暴从发生到结束,共经过多少小时?6(3)求出当x≥25时,风速y(千米/时)与时间x(小时)之间的函数关系式.(4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时30.今年春季,我国西南地区遭受了罕见的旱灾,A、B两村庄急需救灾粮食分别为15吨和35吨。“旱灾无情人有情”,C、D两城市已分别收到20吨和30吨捐赈粮,并准备全部运往....A、B两地。(1)若从C城市运往A村庄的粮食为x吨,则从C城市运往B村庄的粮食为吨,从D城市运往A村庄的粮食为吨,运往B村