实际问题与二次函数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-202462-4xy⑴若-3≤x≤3,该函数的最大值、最小值分别为()、()。⑵又若0≤x≤3,该函数的最大值、最小值分别为()、()。求函数的最值问题,应注意什么?55555132、图中所示的二次函数图像的解析式为:13822xxy1、求下列二次函数的最大值或最小值:⑴y=-x2+2x-3;⑵y=x2+4x某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖件,实际卖出件,销额为元,买进商品需付元因此,所得利润为元10x(300-10x)(60+x)(300-10x)40(300-10x)y=(60+x)(300-10x)-40(300-10x)即6000100102xxy(0≤X≤30)6000100102xxy(0≤X≤30)625060005100510522最大值时,yabx可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值。由公式可以求出顶点的横坐标.元\x元\y625060005300所以,当定价为65元时,利润最大,最大利润为6250元在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润60506000356035183522最大时,当yabx答:定价为元时,利润最大,最大利润为6050元3158做一做由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?60006018183004018300602xxxxxy(0≤x≤20)归纳小结:运用二次函数的性质求实际问题的最大值和最小值的一般步骤:求出函数解析式和自变量的取值范围配方变形,或利用公式求它的最大值或最小值。检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内。某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若每箱以50元销售,平均每天可销售100箱.价格每箱降低1元,平均每天多销售25箱;价格每箱升高1元,平均每天少销售4箱。如何定价才能使得利润最大?练一练若生产厂家要求每箱售价在45—55元之间。如何定价才能使得利润最大?(为了便于计算,要求每箱的价格为整数)有一经销商,按市场价收购了一种活蟹1000千克,放养在塘内,此时市场价为每千克30元。据测算,此后每千克活蟹的市场价,每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元(放养期间蟹的重量不变).⑴设x天后每千克活蟹市场价为P元,写出P关于x的函数关系式.⑵如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x的函数关系式。⑶该经销商将这批蟹放养多少天后出售,可获最大利润,(利润=销售总额-收购成本-费用)?最大利润是多少?解:①由题意知:P=30+x.②由题意知:死蟹的销售额为200x元,活蟹的销售额为(30+x)(1000-10x)元。驶向胜利的彼岸∴Q=(30+x)(1000-10x)+200x=--10x2+900x+30000③设总利润为W=Q-30000-400x=-10x2+500x=-10(x-25)2+6250∴当x=25时,总利润最大,最大利润为6250元。x(元)152030…y(件)252010…若日销售量y是销售价x的一次函数。(1)求出日销售量y(件)与销售价x(元)的函数关系式;(6分)(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(6分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:(2)设每件产品的销售价应定为x元,所获销售利润为w元。则产品的销售价应定为25元,此时每日获得最大销售利润为225元。15252020kbkb则解得:k=-1,b=40。1分5分6分7分10分12分(1)设此一次函数解析式为。bkxy2252540050401022xxxxxw所以一次函数解析为。40xy设旅行团人数为x人,营业额为y元,则旅行社何时营业额最大1.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?3010800xxy.3025055102xxx1100102某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满。当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?解:设每个房间每天增加x元,宾馆的利润为y元Y=(50-x/10)(180+x)-20(50-x/10)Y=-1/10x2+34x+80001.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?(三)销售问题2.某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天的销售量t(件)与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。(1).写出商场卖这种服装每天销售利润y(元)与每件的销售价x(元)间的函数关系式;(2).通过对所得函数关系式进行配方,指出商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?(三)销售问题某个商店的老板,他最近进了价格为30元的书包。起初以40元每个售出,平均每个月能售出200个。后来,根据市场调查发现:这种书包的售价每上涨1元,每个月就少卖出10个。现在请你帮帮他,如何定价才使他的利润最大?某个商店的老板,他最近进了价格为30元的书包。起初以40元每个售出,平均每个月能售出200个。后来,根据市场调查发现:这种书包的售价每上涨1元,每个月就少卖出10个。现在请你帮帮他,如何定价才使他的利润达到2160元?每件涨价)元(\x月利润)元(\y225020005200y0x51015202530123457891o-16(1)请用长20米的篱笆设计一个矩形的菜园。(2)怎样设计才能使矩形菜园的面积最大?ABCDxy2xy最大值(0x10)(1)求y与x的函数关系式及自变量的取值范围;(2)怎样围才能使菜园的面积最大?最大面积是多少?如图,用长20米的篱笆围成一个一面靠墙的长方形的菜园,设菜园的宽为x米,面积为y平方米。ABCD如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。ABCD解:(1)∵AB为x米、篱笆长为24米∴花圃宽为(24-4x)米(3)∵墙的可用长度为8米(2)当x=时,S最大值==36(平方米)32ababac442∴S=x(24-4x)=-4x2+24x(0x6)∴024-4x≤64≤x6∴当x=4cm时,S最大值=32平方米(1).设矩形的一边AB=xm,那么AD边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.想一想P621MN40m30mABCD┐(1).设矩形的一边BC=xm,那么AB边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其顶点A和点D分别在两直角边上,BC在斜边上.想一想P633ABCD┐MNP40m30m:1.50,24.MNmPHm解由勾股定理得xxxxxby242512242512.22.3002525122x.30044,252:2abacyabx最大值时当或用公式12,24.25ABbmbx设易得HG何时窗户通过的光线最多某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?做一做P625xxy.1574.1:xxy由解.4715,xxy得xx21527224715222.222xxxxxxyS窗户面积.02.45622544,07.114152:2abacyabx最大值时当或用公式.562251415272x例2:有一根直尺的短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,其中直角三角形纸板的斜边长为12cm.按图14—1的方式将直尺的短边DE放置在与直角三角形纸板的斜边AB上,且点D与点A重合.若直尺沿射线AB方向平行移动,如图14—2,设平移的长度为x(cm),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm2).(1)当x=0时,S=_____________;当x=10时,S=______________;(2)当0<x≤4时,如图14—2,求S与x的函数关系式;(3)当6<x<10时,求S与x的函数关系式;(4)请你作出推测:当x为何值时,阴影部分的面积最大?并写出最大值.图14—1(D)EFCBAxFEGABCD图14—2ABC备选图一ABC备选图二1.某工厂为了存放材料,需要围一个周长160米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大。2.窗的形状是矩形上面加一个半圆。窗的周长等于6cm,要使窗能透过最多的光线,它的尺寸应该如何设计?BCDAO3.用一块宽为1.2m的长方形铁板弯起两边做一个水槽,水槽的横断面为底角120º的等腰梯形。要使水槽的横断面积最大,它的侧面AB应该是多长?ADBC4.如图3,规格为60cm×60cm的正方形地砖在运输过程中受损,断去一角,量得AF=30cm,CE=45cm。现准备从五边形地砖ABCEF上截出一个面积为S的矩形地砖PMBN。(1)设BN=x,BM=y,请用含x的代数式表示y,并写出x的取值范围;(2)请用含x的代数式表示S,并在给定的直角坐标系内画出该函数的示意图;(3)利用函数图象回2答:当x取何值时,S有最大值?最大值是多少?图3ABCDPEFMN5.在矩形ABCD中,AB=6cm,BC=12cm,点

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功