高中抛物线经典考试题(中等偏难)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

抛物线一.选择题(共18小题)1.(2014•武汉模拟)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2B.2C.2D.42.(2014•和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为()A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6)3.(2014•南阳三模)动圆C经过点F(1,0),并且与直线x=﹣1相切,若动圆C与直线总有公共点,则圆C的面积()A.有最大值8πB.有最小值2πC.有最小值3πD.有最小值4π4.(2014•九江模拟)点P是抛物线y2=4x上一动点,则点P到点A(0,﹣1)的距离与到直线x=﹣1的距离和的最小值是()A.B.C.2D.5.(2014•鄂尔多斯模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.6.(2014•宜宾一模)已知抛物线y2=2px的焦点F到其准线的距离是6,抛物线的准线与x轴的交点为K,A在抛物线上,且,则△AFK的面积为()A.18B.16C.9D.67.(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.28.(2014•甘肃二模)过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点,如果x1+x2=6,那么|AB|=()A.6B.8C.9D.109.(2014•宣城二模)已知抛物线方程为y2=4x,直线l的方程为x﹣y+4=0,在抛物线上有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1+d2的最小值为()A.B.C.D.10.(2012•山东)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=yC.x2=8yD.x2=16y2/2111.(2012•烟台一模)已知P为抛物线y2=4x上一个动点,Q为圆x2+(y﹣4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是()A.B.C.D.12.(2011•湖南模拟)设抛物线y2=4x上一点P到直线x=﹣3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.813.(2011•黑龙江一模)已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F任作一条直线交抛物线于A、B两点,A'、B'分别为A、B在l上的射影,M为A'B'的中点,给出下列命题:①A'F⊥B'F;②AM⊥BM;③A'F∥BM;④A'F与AM的交点在y轴上;⑤AB'与A'B交于原点.其中真命题的个数为()A.2个B.3个C.4个D.5个14.(2011•西城区二模)已知点A(﹣1,0),B(1,0)及抛物线y2=2x,若抛物线上点P满足|PA|=m|PB|,则m的最大值为()A.3B.2C.D.15.(2010•陕西)已知抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切,则p的值为()A.B.1C.2D.416.(2010•宁波二模)已知P是以F1,F2为焦点的椭圆=1(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=,则此椭圆的离心率为()A.B.C.D.17.(2009•天津)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.18.(2006•江西)设O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若=﹣4则点A的坐标是()A.(2,±2)B.(1,±2)C.(1,2)D.(2,2)二.填空题(共4小题)19.(2014•宜春模拟)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=_________.3/2120.(2012•重庆)过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若,则|AF|=_________.21.(2010•重庆)已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点到准线的距离为_________.22.(2004•陕西)设P是曲线y2=4(x﹣1)上的一个动点,则点P到点(0,1)的距离与点P到y轴的距离之和的最小值是_________.三.解答题(共5小题)23.(2013•广东)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.24.(2014•包头一模)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,l与x轴交于点R,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(1)若∠BFD=120°,△ABD的面积为8,求p的值及圆F的方程;(2)在(1)的条件下,若A,B,F三点在同一直线上,FD与抛物线C交于点E,求△EDA的面积.25.(2012•湛江模拟)已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标;(3)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.26.(2011•浙江模拟)在平面直角坐标系中,已知点P(1,﹣1),过点P作抛物线T0:y=x2的切线,其切点分别为M(x1,y1)、N(x2,y2)(其中x1<x2).(Ⅰ)求x1与x2的值;(Ⅱ)若以点P为圆心的圆E与直线MN相切,求圆E的面积;(Ⅲ)过原点O(0,0)作圆E的两条互相垂直的弦AC,BD,求四边形ABCD面积的最大值.27.(2014•长春三模)已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(1)求抛物线C的方程;(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求的最小值.4/21参考答案与试题解析一.选择题(共18小题)1.(2014•武汉模拟)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2B.2C.2D.4考点:抛物线的简单性质.菁优网版权所有专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线方程,算出焦点F坐标为().设P(m,n),由抛物线的定义结合|PF|=4,算出m=3,从而得到n=,得到△POF的边OF上的高等于2,最后根据三角形面积公式即可算出△POF的面积.解答:解:∵抛物线C的方程为y2=4x∴2p=4,可得=,得焦点F()设P(m,n)根据抛物线的定义,得|PF|=m+=4,即m+=4,解得m=3∵点P在抛物线C上,得n2=4×3=24∴n==∵|OF|=∴△POF的面积为S=|OF|×|n|==2故选:C点评:本题给出抛物线C:y2=4x上与焦点F的距离为4的点P,求△POF的面积.着重考查了三角形的面积公式、抛物线的标准方程和简单几何性质等知识,属于基础题.2.(2014•和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为()A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6)考点:抛物线的应用.菁优网版权所有专题:计算题;压轴题.分析:求出两个点的坐标,利用两点连线的斜率公式求出割线的斜率;利用导数在切点处的值为切线的斜率求出切点坐标;利用直线方程的点斜式求出直线方程;利用直线与圆相切的条件求出a,求出抛物线的顶点坐标.5/21解答:解:两点坐标为(﹣4,11﹣4a);(2,2a﹣1)两点连线的斜率k=对于y=x2+ax﹣5y′=2x+a∴2x+a=a﹣2解得x=﹣1在抛物线上的切点为(﹣1,﹣a﹣4)切线方程为(a﹣2)x﹣y﹣6=0直线与圆相切,圆心(0,0)到直线的距离=圆半径解得a=4或0(0舍去)抛物线方程为y=x2+4x﹣5顶点坐标为(﹣2,﹣9)故选A.点评:本题考查两点连线的斜率公式、考查导数在切点处的值为切线的斜率、考查直线与圆相切的充要条件是圆心到直线的距离等于半径.3.(2014•南阳三模)动圆C经过点F(1,0),并且与直线x=﹣1相切,若动圆C与直线总有公共点,则圆C的面积()A.有最大值8πB.有最小值2πC.有最小值3πD.有最小值4π考点:抛物线的定义;点到直线的距离公式;圆的标准方程.菁优网版权所有专题:直线与圆.分析:由题意可得动圆圆心C(a,b)的方程为y2=4x.即b2=4a.由于动圆C与直线总有公共点,利用点到直线的距离公式和直线与圆的位置关系可得圆心C到此直线的距离d≤r=|a+1|=a+1.据此可得出b或a满足的条件,进而得出圆C的面积的最小值.解答:解:由题意可得:动圆圆心C(a,b)的方程为y2=4x.即b2=4a.∵动圆C与直线总有公共点,∴圆心C到此直线的距离d≤r=|a+1|=a+1.∴≤a+1,又,上式化为,化为解得b≥2或.当b=2时,a取得最小值1,此时圆C由最小面积π×(1+1)2=4π.故选:D.点评:本题综合考查了抛物线的定义、直线与圆的位置关系、点到直线的距离公式、一元二次不等式及其圆的面积等基础知识,考查了推理能力和计算能力.4.(2014•九江模拟)点P是抛物线y2=4x上一动点,则点P到点A(0,﹣1)的距离与到直线x=﹣1的距离和的最小值是()A.B.C.2D.考点:抛物线的简单性质.菁优网版权所有专题:计算题.分析:由抛物线的性质,我们可得P点到直线x=﹣1的距离等于P点到抛物线y2=4x焦点F的距离,根据平面上两点之间的距离线段最短,即可得到点P到点A(0,﹣1)的距离与到直线x=﹣1的距离和的最小值.解答:解:∵P点到直线x=﹣1的距离等于P点到抛物线y2=4x焦点F的距离故当P点位于AF上时,点P到点A(0,﹣1)的距离与到直线x=﹣1的距离和最小6/21此时|PA|+|PF|=|AF|=故选D点评:本题考查的知识点是抛物线的简单性质,其中根据抛物线的性质,将点P到点A(0,﹣1)的距离与到直线x=﹣1的距离和,转化为P点到A,F两点的距离和,是解答本题的关键.5.(2014•鄂尔多斯模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.考点:抛物线的简单性质.菁优网版权所有专题:计算题;压轴题.分析:根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.解答:解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D点评:本题主要考查了抛物线的简单性质.考查

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功