2018年泰山区数学中考模拟试题(六)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间120分钟。第Ⅰ卷(选择题共36分)一.选择题(本大题共12小题,计36分。在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分.)1.一种面粉的质量标识为“50±0.25千克”,则下列面粉中合格的是()A.50.30千克B.49.51千克C.49.80千克D.50.70千克2.将数字2.03×10﹣3化为小数是()A.0.203B.0.0203C.0.00203D.0.0002033.下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°4.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°6.如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是()A.75(1+)cm2B.75(1+)cm2C.75(2+)cm2D.75(2+)cm27.关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4B.众数是5C.中位数是6D.方差是3.28.如图,PA,PB是⊙O的切线,A,B为切点,AC为⊙O的直径,弦BD⊥AC下列结论:①∠P+∠D=180°;②∠COB=∠DAB;③∠DBA=∠ABP;④∠DBO=∠ABP.其中正确的只有()A.①③B.②④C.②③D.①④9.如图,D为△BAC的外角平分线上一点并且满足BD=CD,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠ACD.其中正确的结论有()A.1个B.2个C.3个D.4个10.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c=0;③2b+c+3=0;④当1<x<3时,x2+(b﹣1)x+c<0其中正确的有()个.A.4B.3C.2D.111.如图,四边形ABCD是矩形,AB=8,BC=4,动点P以每秒2个单位的速度从点A沿线段AB向B点运动,同时动点Q以每秒3个单位的速度从点B出发沿B﹣C﹣D的方向运动,当点Q到达点D时P、Q同时停止运动,若记△PQA的面积为y,运动时间为x,则下列图象中能大致表示y与x之间函数关系图象的是()A.B.C.D.12.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2017的横坐标是()A.()2015B.﹣()2015C.﹣()2016D.()2016第Ⅱ卷(非选择题共84分)二.填空题(共6小题计,18分)13.关于x的方程(a-5)x2-4x-1=0有实数根,则a的取值范围为.14.反比例函数y=中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x的增大而增大,则k=.15.已知:如图,圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是cm2.16.将一块矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体水箱,且此长方体水箱的底面长比宽多2米.求该矩形铁皮的长和宽各是多少米?若设该矩形铁皮的宽是x米,则根据题意,可得方程.17.“奔跑吧,兄弟!”节目组预设计一个新游戏:“奔跑”路线A、B、C、D四地,如图A、B、C三地在同一直线上,D在A北偏东30°方向,在C北偏西45°方向,C在A北偏东75°方向,且BD=BC=40m,从A地到D地的距离是m.18.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处,则BC的长为.三.解答题(解答应写出必要的文字说明、证明过程或推演步骤.共7小题,满分66分)19.(本小题满分8分)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.20.(本小题满分8分)4.23号,“世界读书日”,某校为了推进学校均衡发展,提高学生阅读能力。计划再购进一批图书,丰富学生的课外阅读.为了解学生对课外阅读的需求情况,学校对学生所喜爱的读物:A.文学,B.艺术,C.科普,D.生活,E.其他,进行了随机抽样调查(规定每名学生只能选其中一类读物),并将调查结果绘制成以下不完整的统计图表.(1)a=,b=,请补全条形统计图;(2)如果全校有2500名学生,请你估计全校有多少名学生喜爱科普读物;(3)学校从喜爱科普读物的学生中选拔出2名男生和3名女生,并从中随机抽取2名学生参加科普知识竞赛,请你用树状图或列表法求出恰好抽到一名男生和一名女生的概率.21.(本小题满分9分)为落实国家“三农政策”,发展农村经济,泰安一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工销售精加工销售每吨获(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?22.(本小题满分10分)如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E(1)求证:△AMN是等腰三角形;(2)求BM•AN的最大值;(3)当M为BC中点时,求ME的长.23.(本小题满分8分)如图,在平面直角坐标系xOy中,直线y=﹣x+3交y轴于点A,交反比例函数y=(k<0)的图象于点D,y=(k<0)的图象过矩形OABC的顶点B,矩形OABC的面积为4,连接OD.(1)求反比例函数y=的表达式;(2)求△AOD的面积.24.(本小题满分12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0)、点B(0,﹣8),直线AC与y轴交于点C(0,﹣4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC于点E.(l)求抛物线所对应的函数表达式.(2)若四边形PBCD为平行四边形,求点P的坐标.(3)求点E横坐标的最大值.25.(本小题满分11分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°),得到正方形OE′F′G′;①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为2,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.泰安初四数学中考模拟试题参考答案(简答)一.选择题(共12小题,每小题3分,共36分)1.C;2.C;3.C;4.D;5.D;6.C;7.C;8.C;9.C;10.B;11.B;12.D;二.填空题(共6小题,每小题3分,共18分)13.a≥1;14.﹣1;15.65π;16.x(x﹣2)×1=15;17.20;18.3;三.解答题(共7小题,共66分。其中,19题8分,20题8分,21题9分,22题10分,23题8分,24题12分,25题11分)19.(8分)解:原式=•=﹣•………………………………………………2分=,………………………………………………4分解不等式组得,﹣1≤x<,……………………………………6分当x=2时,原式==﹣2.……………………………………8分20.(8分)解:(1)∵抽查的总人数为:32÷10%=320人,…………………………2分∴a=320×25%=80人,b=320﹣80﹣48﹣96﹣32=64人;补全条形统计图如下:故答案为:80,64;…………………………4分(2)2500×=750人.答:估计全校喜爱科普读物的学生约有750人.…………………………6分(3)列表得:女女女男男女﹣﹣﹣(女,女)(女,女)(男,女)(男,女)女(女,女)﹣﹣﹣(女,女)(男,女)(男,女)女(女,女)(女,女)﹣﹣﹣(男,女)(男,女)男(女,男)(女,男)(女,男)﹣﹣﹣(男,男)男(女,男)(女,男)(女,男)(男,男)﹣﹣﹣或画树状图得…………………………7分所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)=.…………………………8分21.(9分)解:⑴设应安排x天进行精加工,y天进行粗加工,根据题意得:x+y=12,5x+15y=140.…………………………3分解得x=4,y=8.答:应安排4天进行精加工,8天进行粗加工.…………………………4分⑵①精加工m吨,则粗加工(140-m)吨,根据题意得:W=2000m+1000(140-m)=1000m+140000.…………………………5分②∵要求在不超过10天的时间内将所有蔬菜加工完,∴m5+140-m15≤10…………………………6分解得m≤5.∴0<m≤5.…………………………7分又∵在一次函数W=1000m+140000中,k=1000>0,∴W随m的增大而增大,∴当m=5时,W=1000×5+140000=145000.…………………………8分∴精加工天数为5÷5=1,粗加工天数为(140-5)÷15=9.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.…………………………9分22.(10分)(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,又∠AMN=∠AMB,∴∠AMN=∠NAM,………………………………………2分∴AN=MN,即△AMN是等腰三角形;………………………………………3分(2)解:作NH⊥AM于H,∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠AMN=∠AMB,∴△NAH∽△AMB,………………………………5分∴=,∴AN•BM=AH•AM=AM2,………………………………6分在Rt△AMB中,AM2=AB2+BM2=9+BM2,∵BM≤2,∴9+BM2≤13,∴AN•BM≤,即当BM=2时,BM•AN的最大值为;………………………………7分(3)解:∵M为BC中点,∴BM=CM=BC=1,由(2)得,AN•BM=AM2,∵AM2=32+12=10,∴AN=5,∴DN=5﹣2=3,………………………………8分设DE=x,则CE=3﹣x,∵AN∥BC,∴=,即=,解得,x=,即DE=,………………………………9分∴CE=,∴ME==.………………………………10分(有其他正确方法者,酌情赋分)23.(8分)解:(1)∵矩形OABC的面积为4,双曲线在第二象限,∴k=﹣4,………………………………1分∴反比例函数的表达式为y=﹣;………………………………2分(2)∵直线y=﹣x+3交y轴于点A,∴点A的坐标为(0,3),即OA=3,……………………………3分解方程组,……………………………4分得,,……………………………5分∵点D在第二象限,