江苏省高邮市初三数学上学期期中试卷(含答案解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

江苏省高邮市2019初三数学上学期期中试卷(含答案解析)江苏省高邮市2019初三数学上学期期中试卷(含答案解析)一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列方程中,关于x的一元二次方程是()A.x2+2x=x2﹣1B.C.ax2+bx+c=0D.3(x+1)2=2(x+1)2.(3分)如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°3.(3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6B.5C.4D.34.(3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°5.(3分)已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1?x2等于()A.﹣4B.﹣1C.1D.46.(3分)在△ABC中,O为内心,∠A=70°,则∠BOC=()A.140°B.135°C.130°D.125°7.(3分)下列语句:①相等的圆周角所对的弧是等弧;②经过三个点一定可以作一个圆;③等腰直角三角形的外心不在这个三角形顶角的角平分线上;④等边三角形的内心到三角形三个顶点的距离相等,正确的个数为()A.1B.2C.3D.48.(3分)已知Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,r为半径的圆与边AB有两个交点,则r的取值范围是()A.r=B.r>C.3<r<4D.二、填空题(本题共10个小题,每小题3分,共30分)9.(3分)已知关于x的方程x2+mx﹣6=0的一个根为2,则m=.10.(3分)已知圆O的直径为6,点M到圆心O的距离为4,则点M与⊙O的位置关系是.11.(3分)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=.12.(3分)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.13.(3分)如图,量角器上的C、D两点所表示的读数分别是80°、50°,则∠DBC的度数为.14.(3分)如图,AB是⊙O的直径,CB切⊙O于B,连接AC交⊙O于D,若BC=8cm,DO⊥AB,则⊙O的半径OA=cm.15.(3分)若α,β是方程x2﹣2x﹣1=0的两个实数根,则α2+β2=.16.(3分)如图,四边形ABCD内接于⊙O,若∠BOD=140°,则它的一个外角∠DCE=.17.(3分)如图,矩形ABCD的边AB过⊙O的圆心,E、F分别为AB、CD与⊙O的交点,若AE=3cm,AD=4cm,DF=5cm,则⊙O的直径等于.18.(3分)已知等腰直角三角形ABC的腰长为4,半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,则半圆的半径为.三、解答题(本题共10个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.(8分)解下列方程:(1)x2﹣4x+8=0;(2)3x(x﹣1)=2(1﹣x).20.(8分)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.21.(8分)每位同学都能感受到日出时美丽的景色.右图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A﹑B两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,求“图上”太阳升起的速度.22.(8分)如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.若点D在⊙O的外且∠DAC=∠BAC,求证:直线AD是⊙O的切线.23.(10分)如图:已知P是半径为5cm的⊙O内一点.解答下列问题:(1)用尺规作图找出圆心O的位置.(要求:保留所有的作图痕迹,不写作法)(2)用三角板分别画出过点P的最长弦AB和最短弦CD.(3)已知OP=3cm,过点P的弦中,长度为整数的弦共有条.24.(10分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.25.(10分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.26.(10分)已知关于x的方程x2﹣(2m+1)x+m2+m=0.(1)用含m的代数式表示这个方程的实数根.(2)若Rt△ABC的两边a、b恰好是这个方程的两根,另一边长c=5,求m的值.27.(12分)如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;设∠OCP=α,当线段CP与圆O只有一个公共点(即P点)时,求α的范围(直接写出答案);(3)如图2,延长PO交圆O于点D,连接DB,当CP=DB,求证:CP是圆O的切线.28.(12分)阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC?r+AC?r+AB?r=(a+b+c)r.∴r=.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在四边形ABCD中,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,⊙O1与△ABD切点分别为E、F、G,设它们的半径分别为r1和r2,若∠ADB=90°,AE=4,BC+CD=10,S△DBC=9,r2=1,求r1的值.江苏省高邮市2019初三数学上学期期中试卷(含答案解析)参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列方程中,关于x的一元二次方程是()A.x2+2x=x2﹣1B.C.ax2+bx+c=0D.3(x+1)2=2(x+1)考点:一元二次方程的定义.分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解答:解:A、原方程可化为:2x+1=0,是一元一次方程,错误;B、是分式方程,错误;C、方程二次项系数可能为0,错误;D、原方程可化为:3x2+4x+1=0,符合一元二次方程定义,正确.故选D.点评:本题考查了一元二次方程的概念,解答时要先观察方程特点,再依据以上四个方面的要求进行有针对性的判断.2.(3分)如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°考点:圆周角定理.专题:压轴题.分析:先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.解答:解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.点评:本题利用了圆周角定理和邻补角的概念求解.3.(3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6B.5C.4D.3考点:垂径定理;勾股定理.分析:过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.解答:解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.点评:本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.4.(3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°考点:切线的性质;圆心角、弧、弦的关系.专题:几何图形问题.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.点评:本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.5.(3分)已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1?x2等于()A.﹣4B.﹣1C.1D.4考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据韦达定理得x1?x2=1.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1?x2=.6.(3分)在△ABC中,O为内心,∠A=70°,则∠BOC=()A.140°B.135°C.130°D.125°考点:三角形的内切圆与内心.分析:根据三角形的内角和定理求出∠ABC+∠ACB的度数,根据三角形的内心,求出∠OBC+∠OCB=(∠ABC+∠ACB),代入求出∠OBC+∠OCB,根据三角形的内角和定理求出∠BOC即可.解答:解:∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵点O是△ABC的内心,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°.故选D.点评:本题考查了三角形的内角和定理,三角形的内心,角平分线定义等知识点的应用,关键是求出∠OBC+∠OCB的度数,题目比较典型,主要训练了学生的推理能力和计算能力.7.(3分)下列语句:①相等的圆周角所对的弧是等弧;②经过三个点一定可以作一个圆;③等腰直角三角形的外心不在这个三角形顶角的角平分线上;④等边三角形的内心到三角形三个顶点的距离相等,正确的个数为()A.1B.2C.3D.4考点:圆周角定理;确定圆的条件;三角形的外接圆与外心;三角形的内切圆与内心.分析:由圆周角定理,可得在同圆或等圆中,相等的圆周角所对的弧是等弧;由确定三角形的条件可知经过不在同一直线上三个点一定可以作一个圆;由三角形的外心与内心的知识可知等腰直角三角形的外心在这个三角形顶角的角平分线上,等边三角形的内心到三角形三个顶点的距离相等.解答:解:①在同圆或等圆中,相等的圆周角所对的弧是等弧,故错误;②经过不在同一直线上三个点一定可以作一个圆;故错误;③等腰直角三角形的外心在这个三角形顶角的角平分线上;故错误;④等边三角形的内心到三角形三个顶点的距离相等;正确.故选A.点评:此题考查了圆周角定理、确定圆的条件以及三角形外心与外心的知识.此题难度不大,注意熟记定理是解此题的关键.8.(3分)已知Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,r为半径的圆与边AB有两个交点,则r的取值范围是()A.r=B.r>C.3<r<4D.考点:直线与圆的位置关系.分析:要使圆与斜边AB有两个交点,则应满足直线和圆相交,且半径不大于AC.要保证相交,只需求得相切时,圆心到斜边的距离,即斜边上的高即可.解答:解:如图,∵BC>AC,∴以C为圆心,R为半径所作的圆与斜边AB有两个交点,则圆的半径应大于CD,小于或等于AC,由勾股定理知,AB==5.∵S△ABC=AC?BC=CD?AB=×3×4=×5?CD,∴CD=,即R的取值范围是<r≤3.故选D.点评:本题利用了勾股定理和垂线段最短的定理,以及直角三角形的面积公式求解.特别注意:圆与斜边有两个交点,即两个交点都应在斜边上.二、填空题(本题共10个小题,每小题3分,共30分)9.(3分)已知关于x的方程x2+mx﹣6=0的一个根为2,则m=1.考点:一元二次方程的解.分析:把x=2代入方程x2+mx﹣6=0得到一个关于m的一元

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功