第3章压弯杆的稳定任课教师:强士中卫星第3章压弯杆的稳定压弯杆弯曲失稳的特点压弯杆弹性弯曲失稳弹性压弯杆的设计准则压弯杆的弹塑性弯曲失稳压弯杆的相关公式3.1压弯杆弯曲失稳特点压弯杆是一种受轴向力和弯矩共同作用的结构杆件,压弯杆分析包括同时作为梁的挠度问题与作为柱的稳定问题,其力学性质介于梁和柱之间,故也称为梁柱。压弯杆的失稳形式(1)弯矩平面内失稳极值点失稳,弯曲失稳,荷载-位移曲线,极限承载力(2)弯矩平面外失稳分支点失稳,弯扭失稳,特征值问题,屈曲荷载ΔPPuPcrOABDFECMNabbcc3.2压弯杆弹性弯曲失稳3.2.1偏心荷载作用的两端铰支杆其中解之得:(1)2个常数A、B由2个边界条件确定:,;,(2)将(2)代入(1):跨中挠曲变形:EIwNweEIwNwNe22wkwke2kNEIsincoswAkxBkxe0x0wlx0w0sincos0BeAklBkle1cossinBeklAekl1cossincos1sinklwekxkxkl1cos1sincos11sec1sin22cos22cklklklklweeeklkl令则:弯矩放大系数η:对于跨中截面:22crEINl22222crcrNlNEINklEIEINNsec12ccrNweN01NweMwMNee1sec2ccrwNeN246815611349sec12!4!6!8!xxxxx23246225611838446080111.0281.031810.233/111.2331/1/crcrcrcrcrcrcrcrcrcrNNNNNNNNNNNNNNNNNNNN3.2.2具有初始弯曲的压弯杆设其中解之得:(1)将特解代入微分方程(2)00sincxwwl00EIwNww220sincxwkwkwl2NkEIsincossincosxxwAkxBkxCDll*sincosxxwCDll22222220sincos0cxxCkkwDkllll2222022200cCkkwlDkl00222110ccrccrwNNwCNNklD0sincossin1ccrcrwNNxwAkxBkxNNl2个常数A、B由2个边界条件确定:,;,(3)将(3)代入(2):跨中挠曲变形:最大截面应力:令,,,则:0x0wxl0w0sincos0BAklBkl00BA0sin1ccrcrwNNxwNNl01ccrccrwNNwNN0000111ccccccrN0maxcNwNAWWA00ccwwAmWcNAcrcrNAmax11ccccrm3.2.3杆上有横向力作用(1)解之得:(2)常数A、B、C、D由4个边界条件确定:,;,,;,。(3)11220()()0QcEIwNwxlQlclxEIwNwl(0)()xlclcxl211222()()QcwkwxEIlQlclxwkwEIl(0)()xlclcxl12sincos()()sincosQcxwAkxBkxNlQlclxwCkxDkxNl(0)()xlclcxl0x10wxlc21ww21wwlx20w0coscossinsinsincossincos0BQAklkcCklkcDklkckNAklkcCklkcDklkcCklDkl0sinsinsinsinBQkcAkNklQklkcCkNtgklQklkcDkN将(3)代入(4)得:若c=l/2,则:最大弯矩出现在跨中,将x=l/2代入,得:12sinsinsinsin()()sinsinQkcQcxwkxkNklNlQklkcQlclxwklkxkNklNl12sin2cos22()sin2cos22QQxwkxkNklNQQlxwklkxkNklN(0)()xclcxl(0/2)(/2)xllxlsincos22sincos22QklkxkMEIwQklklkxk(0/2)(/2)xllxlmaxtantan22224QklQlklklMk由侧向集中荷载Q单独作用引起得杆中央弯矩:M0=Ql/4因此:Mmax=M0η,考虑到:所以:357216272tan223!25!27!2klklklklkltan22klkl232466222721121207!2110.98700.98571210.178/110.8221/1/crcrcrcrcrcrcrcrcrcrNNNNNNNNNNNNNNNNNNNN3.2.4杆上有横向均布荷载作用(1)解之得:(2)根据边界条件:x=0,w=0;x=l,w=0(3)222qlqlMxxNw2sincos2qxlxqwAkxBkxNkNNNw2qxEIwNwlx22qxwkwlxEI220sincos0qBkNqAklBklkN2221cossin2qBkNklqqklAtgklkNkN将(3)代入(2),则:弯矩:最大弯矩出现在跨中,将x=l/2代入,得:侧向均布荷载q单独作用引起得杆中央弯矩:M0=ql2/8因此:Mmax=M0η2sincos122qxlxqklwtgkxkxkNN1sin2tancos2kxklkxkqwEIM2max22228costansin1sec1sec1222282qklklklqklqlklMkkkl弯矩增大系数:由于:又有:所以:228sec12klkl86422!813492!6612!452!2112secklklklklklcrcrNNNEIEINlk22222324622561134914857608!325111.00340.97774810.028/111.0281/1/crcrcrcrcrcrcrcrcrcrNNNNNNNNNNNNNNNNNNNN3.2.5杆端受弯矩作用任意截面弯矩:(1)解之得:(2)根据边界条件:x=0,w=0;x=l,w=0(3)NNMAMByxABAMMMxMNwlABAMMEIwNwxMl2ABAMMMwkwxEIlEIsincosABAMMMwAkxBkxxNlN0sincos0ABMBNMAklBklN1cscctgABAMBNAMklMklN将(3)代入(2),得:挠度:(4)弯矩:(5)若MA=MB=M0,代入(4)、(5),得:挠度:弯矩:(6)cscsincscsin()BAMMxlxwklkxklklxNlNlcscsincscsinBAMEIwMklkxMklklkx0022sincos1cos1coscossin22cos2MMkxklklwkxklkxklkEIklkEI0coscos22klklMEIwMkx最大弯矩出现在跨中,将x=l/2代入,得:弯矩增大系数:23246225611838446080111.0281.031810.233/111.2331/1/crcrcrcrcrcrcrcrcrcrNNNNNNNNNNNNNNNNNNNNmax0sec2klMMsec2kl86422!813492!6612!452!2112secklklklklkl考虑变形后平衡状态的弹性二阶内力基本假定为:杆件具有抗弯或抗剪刚度;杆件为等截面杆件,轴力为常数;不考虑由轴力引起的杆件轴向变形;杆件的变形远小于杆件或结构的尺寸;忽略杆件挠曲引起的杆长变化。根据小挠度理论,当不考虑剪切变形时,可以建立偏压直杆挠度曲线的微分方程:抗弯刚度EI为常数,令k2=N/EI,则方程的通解为:转角:弯矩:剪力:xqwNwEIxfDCxkxBkxAwsincosxfCkxBkxAkwcossinxfEIkxBkxANwEIMsincosxfEIkxBkxAkNwEIQcossin荷载约束条件临界荷载Mmax弯矩增大系数理论值近似值横向均布荷载铰结-铰结跨中自由-固结端部铰结-固结端部固结-固结端部跨中集中荷载铰结-铰结跨中铰结-固结端部固结-固结端部222(sec(2)1)/4klkl10.03(/)1(/)crcrNNNN2221sectanklklklkl10.38/1(/)crcrNNNN228tan(2)2/tanklklklklkl10.4/1(/)crcrNNNN2212tan(2)6tan2klklklkl10.4/1(/)crcrNNNNtan22klkl10.18/1(/)crcrNNNN2281cos23cos21/1/tanklklklklklkl10.3/1(/)crcrNNNN44cos2sin2klklkl10.2/1(/)crcrNNNN22EIl22(2)EIl22(0.7)EIl22(0.5)EIl22EIl22(0.7)EIl22(0.5)EIl荷载约束条件临界荷载Mmax弯矩增大系数理论值近似值三角形分布荷载铰结-铰结自由-固结端部端弯矩作用铰结-铰结跨中自由-固结端部22EIl22(2)EIl22EIl22(2)EIl222222sin1sinarccossin6sinarccosklklklklklklklkl223tan6tan1klklklklkl10.5(/)1(/)crcrNNNNs