一般常用求导公式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

四、基本求导法则与导数公式1.基本初等函数的导数公式和求导法则基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下:基本初等函数求导公式(1)0)(C(2)1)(xx(3)xxcos)(sin(4)xxsin)(cos(5)xx2sec)(tan(6)xx2csc)(cot(7)xxxtansec)(sec(8)xxxcotcsc)(csc(9)aaaxxln)((10)(e)exx(11)axxaln1)(log(12)xx1)(ln,(13)211)(arcsinxx(14)211)(arccosxx(15)21(arctan)1xx(16)21(arccot)1xx函数的和、差、积、商的求导法则设)(xuu,)(xvv都可导,则(1)vuvu)((2)uCCu)((C是常数)(3)vuvuuv)((4)2vvuvuvu反函数求导法则若函数)(yx在某区间yI内可导、单调且0)(y,则它的反函数)(xfy在对应区间xI内也可导,且)(1)(yxf或dydxdxdy1复合函数求导法则设)(ufy,而)(xu且)(uf及)(x都可导,则复合函数)]([xfy的导数为dydydudxdudx或()()yfux上述表中所列公式与法则是求导运算的依据,请读者熟记.2.双曲函数与反双曲函数的导数.双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.可以推出下表列出的公式:(sh)chxx(ch)shxx21(th)chxx21(arsh)1xx21(arch)1xx21(arth)1xx

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功