【新人教版九年级数学上册名校期中期末试题及答案】滨河学校上学期九级期末数学试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1期末模拟试题姓名得分一、选择题(40分)1.下列二次根式中,最简二次根式()A.5B.0.5C.15D.502.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.125°C.70°D.145°3.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列事件中是必然事件的是()A.一个直角三角形的两个锐角分别是40°和60°B.抛掷一枚硬币,落地后正面朝上C.当x是实数时,20x≥D.长为5cm、5cm、11cm的三条线段能围成一个三角形5.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36B.48(1+x)2=36C.36(1﹣x)2=48D.36(1+x)2=486.如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.3B.4C.5D.87.如图,⊙O是△ABC的外接圆,连接OB、OC,若OB=BC,则∠BAC等于()第7题图2A.60°B.45°C.30°D.20°8.若关于x的一元二次方程2210kxx有两个不相等的实数根,则实数k的取值范围是()A.1kB.1k且0kC.1k且0kD.1k且0k9.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.23(2)3yxB.23(2)3yxC.23(2)3yxD.23(2)3yx10.在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()二、填空题(20分)11.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为12.如图,如果从半径为5cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是cm.第13题图第12题图13.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=三、解答题(90分)15.(8分)计算:18)21(|322|2316.(10分)当x满足条件时,求出方程x2﹣2x﹣4=0的根.17.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得≥0成立?若存在,请求出k的值;若不存在,请说明理由.18.(12分)某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90.(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.(2)请问前多少个月的利润和等于1620万元?19.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)420,(10分)韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法或树状图表示出所有可能出现的游戏结果;(2)求韦玲胜出的概率.21.(14分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△11BAC;平移△ABC,若A的对应点2A的坐标为(0,4),画出平移后对应的△222CBA;(2)若将△11BAC绕某一点旋转可以得到△222CBA,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直[接写出点P的坐标.22.(14分)如图,一次函数122yx分别交y轴、x轴于A、B两点,抛物线2yxbxc过A、B两点。(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N。求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标。xyACBO第21题图–1–2–3–4–512345–1–2–3–4–5123455答案1A2B3B4C5D6C7C8D9A10C11.15;12.3;13.π;14.3或﹣315.解:原式23422312.16.解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.17.解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k2+2k)≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k≤,∴不存在实数k使得≥0成立.[来18.解:(1)y=w·x=(10x+90)x=10x2+90x(x为正整数)(2)设前x个月的利润和等于1620万元,10x2+90x=1620即:x2+9x-162=0得x=27299x1=9,x2=-18(舍去)答:前9个月的利润和等于1620万元619.解(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.20.解:(1)画树状图得:则有9种等可能的结果;(2)∵韦玲胜出的可能性有3种,故韦玲胜出的概率为:.21.解:(1)画出△A1B1C如图所示:(2)旋转中心坐标(23,1);(3)点P的坐标(-2,0).xy(B1)C2B2A2A1ACBO第21题图–1–2–3–4–512345–1–2–3–4–512345722.【解】(1)易得A(0,2),B(4,0)将x=0,y=2代入22yxbxcc得将x=4,y=0代入2yxbxc得0=-16+4b+2,7,2,22cx27从而得b=y=-x2(2)由题意易得217(,2),(,2)22MttNttt22712(2)422MNttttt从而当2t时,MN有最大值4(3)、由题意可知,D的可能位置有如图三种情形当D在y轴上时,设D的坐标为(0,a)由AD=MN得1224,6,2aaa解得,从而D为(0,6)或D(0,-2)当D不在y轴上时,由图可知12DDNDM为与的交点易得126,2DNxDx13的方程为y=-M的方程为y=22由两方程联立解得D为(4,4)故所求的D为(0,6),(0,-2)或(4,4)8如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢,现介绍几种方法以供参考:一、课内重视听讲,课后及时复习。新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。二、适当多做题,养成良好的解题习惯。要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于9一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。三、调整心态,正确对待考试。首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我****,要有自己不垮,谁也不能打垮我的自豪感。在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。如何提高解数学题的能力任何学问都包括知识和能力两个方面,在数学方面,能力比具体的知识要重要的多。当然,我们也不能过分强调能力,而忽视知识的学习,我们应当在学习一定数量知识的同时,还应该学会一些解决问题的能力。能力是什么,心理学中是这样定义的:能力是指直接影响人的活动效率,使活动顺利完成的个性心理特征。在数学里,我认为,能力就是解决问题的才智。一、怎样才能提高自己的解题能力10首先是模仿。解题是一种本领,就像游泳、滑雪、弹钢琴一样,开始只能靠模仿才能够学到它。其次是实践。如果你不亲自下水游泳,你就永远也学不会游泳,因此,要想获得解题能力,就必须要做习题,并且要多做习题。再次,要提高自己的解题能力,光靠模仿是不够的,你必须要动脑筋。例如,对于课本的定理的证明,例题的解法、证法能读懂听懂还不够,你必须明白人家是怎样想出那个解题方法的,为什么要那样解题,有没有其它的解题途径,我认为这才是最重要的东西。如果你真正领会了人家的解题思路,那么在此基础上你就有所创新,就能够提高你的解题能力。二、学习数学应注意培养什么样的能力1运算能力。2空间想象能力。3逻辑思维能力。4将实际问题抽象为数学问题的能力。5形数结合互相转化的能力。6观察、实验、比较、猜想、归纳问题的能力。7研究、探讨问题的能力和创新能力。三、提高数学解题能力的关键是什么?灵活应用数学思想方法是提高解题能力的关键,我们的先辈数学家们,已经为我们创造出了很多的数学思想方法,我们应该很好地体会它,理解它,并且要灵活地应用它。对于初中数学主要是以下四类数学思想(所谓思想就是指导我们实践的理论方法,这里主要指想法或方法):1转化思想。2方程思想。3形数结合思想。4函数思想。5.整体思想6

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功