反比例函数综合题难题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

反比例函数综合题(解答)组卷:飞哥布置作业在线训练下载组卷一.解答题(共30小题)1.如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,过点A的双曲线y=kx的一支在第一象限交梯形对角线OC于点D,交边BC于点E.(1)填空:双曲线的另一支在第三象限,k的取值范围是k>0;(2)若点C的坐标为(2,2),当点E在什么位置时,阴影部分的面积S最小?(3)若ODOC=12,S△OAC=2,求双曲线的解析式.显示解析2.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=kx(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=12.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.显示解析3.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(-4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.显示解析4.如图,直线y=k1x+b与双曲线y=k2x相交于A(1,2)、B(m,-1)两点.(1)求直线和双曲线的解析式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式;(3)观察图象,请直接写出不等式k1x+b>k2x的解集.显示解析5.如图,一次函数y1=-x-1的图象与x轴交于点A,与y轴交于点B,与反比例函数y2=kx图象的一个交点为M(-2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.显示解析6.如图,已知一次函数y1=kx+b图象与x轴相交于点A,与反比例函数y2=cx的图象相交于B(-1,5)、C(52,d)两点.点P(m,n)是一次函数y1=kx+b的图象上的动点.(1)求k、b的值;(2)设-1<m<32,过点P作x轴的平行线与函数y2=cx的图象相交于点D.试问△PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;(3)设m=1-a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围.VIP显示解析7.如图,等腰梯形ABCD放置在平面坐标系中,已知A(-2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C的坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?显示解析8.已知反比例函数y=1x的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M2,M3…,Mn,则S△P1M1M2+S△P2M2M3+…+S△Pn-1Mn-1Mn=n-12n.显示解析9.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求k的值;(2)点N(a,1)是反比例函数y=kx(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.VIP显示解析10.如图,已知双曲线y=kx经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.显示解析11.如图1和2,在△ABC中,AB=13,BC=14,cos∠ABC=513.探究:如图1,AH⊥BC于点H,则AH=12,AC=15,△ABC的面积S△ABC=84;拓展:如图2,点D在AC上(可与点A,C重合),分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为S△ABD=0)(1)用含x,m,n的代数式表示S△ABD及S△CBD;(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的求值范围.发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.VIP显示解析12.如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=mx(x>0)的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).显示解析13.如图,已知双曲线y=kx和直线y=mx+n交于点A和B,B点的坐标是(2,-3),AC垂直y轴于点C,AC=32.(1)求双曲线和和直线的解析式.(2)求△AOB的面积.VIP显示解析14.已知一次函数y1=x+m的图象与反比例函数y2=6x的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.显示解析15.如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(d,2).(1)求d的值;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.VIP显示解析16.甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=优惠金额购买商品的总金额),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.VIP显示解析17.如图,已知反比例函数y=mx(x>0)的图象与一次函数y=-x+b的图象分别交于A(1,3)、B两点.(1)求m、b的值;(2)若点M是反比例函数图象上的一动点,直线MC⊥x轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2,S=S2-S1,求S的最大值.显示解析18.如图,已知反比例函数y1=k1x(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?VIP显示解析19.如图,已知直线AB与x轴交于点C,与双曲线y=kx交于A(3,203)、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.显示解析20.Ⅰ.爱养花的李先生为选择一个合适的时间去参观2011年西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题:(1)5月10日至16日这一周中,参观人数最多的是日是星期六,有34万人,参观人数最少的是日是星期一,有16万人,中位数是22.(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt△OBA和Rt△BCD中,∠OBA=∠BCD=90°,点A和点C都在双曲线y=4x(k>0)上,求点D的坐标.显示解析21.如图,将一矩形OABC放在直角坐标系中,O为坐标原点.点A在y轴正半轴上.点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数y=kx(x>0)的图象与边BC交于点F.(1)若△OAE、△OCF的面积分别为S1、S2.且S1+S2=2,求k的值;(2)若OA=2.0C=4.问当点E运动到什么位置时.四边形OAEF的面积最大.其最大值为多少?VIP显示解析22.如图,已知反比例函数y=mx(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).(1)求一次函数的关系式;(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=17(O为坐标原点),求反比例函数的关系式;(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.显示解析23.在Rt△ABC中,∠C=90°,∠A=30°,BC=2.若将此直角三角形的一条直角边BC或AC与x轴重合,使点A或点B刚好在反比例函数y=6x(x>0)的图象上时,设△ABC在第一象限部分的面积分别记做S1、S2(如图1、图2所示)D是斜边与y轴的交点,通过计算比较S1、S2的大小.显示解析24.如图,正比例函数y1=k1x与反比例函数y2=k2x相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且S△BDO=4.过点A的一次函数y3=k3x+b与反比例函数的图象交于另一点C,与x轴交于点E(5,0).(1)求正比例函数y1、反比例函数y2和一次函数y3的解析式;(2)结合图象,求出当k3x+b>k2x>k1x时x的取值范围.VIP显示解析25.如图,在平面直角坐标系中,点O为原点,反比例函数y=kx的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上.(1)求反比例函数的关系式;(2)直接写出菱形OABC的面积.显示解析26.如图,一次函数y=kx+2的图象与反比例函数y=mx的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,OCOA=12.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.VIP显示解析27.如图,四边形OABC是面积为4的正方形,函数y=kx(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数y=kx(x>0)的图象交于点E、F,求线段EF所在直线的解析式.VIP显示解析28.如图所示,直线y=kx+6与函数y=mx(x>0,m>0)的图象交于A(x1,y1),B(x2,y2)(x1<x2)两点,且与x轴、y轴分别交于D、C两点.又AE⊥x轴于E,BF⊥x轴于F.已知△COD的面积是△AOB面积的3倍.(1)求y1-y2的值.(2)求k与m之间的函数关系式,并画出该函数图象的草图.(3)是否存在实数k和m,使

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功