人教版高中数学必修三几何概型课件(公开课)(28张PPT)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

几何概型回顾复习这是古典概型,它是这样定义的:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.其概率计算公式:P(A)=A包含的基本事件的个数基本事件的总数下面是运动会射箭比赛的靶面,靶面半径为10cm,黄心半径为1cm.现一人随机射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,请问射中黄心的概率是多少?设“射中黄心”为事件A1001)(的面积试验全部结果构成区域对应区域的面积AAP不是为古典概型?500ml水样中有一只草履虫,从中随机取出2ml水样放在显微镜下观察,问发现草履虫的概率?25015002)(的体积试验全部结果构成区域对应区域的体积AAP设“在2ml水样中发现草履虫”为事件A不是古典概型!某人在7:00-8:00任一时刻随机到达单位,问此人在7:00-7:10到达单位的概率?问此人在7:50-8:00到达单位的概率?设“某人在7:10-7:20到达单位”为事件A61)(的长度试验全部结果构成区域对应区域的长度AAP不是古典概型!类比古典概型,这些实验有什么特点?概率如何计算?1比赛靶面直径为122cm,靶心直径为12.2cm,随机射箭,假设每箭都能中靶,射中黄心的概率1001)(的面积试验全部结果构成区域对应区域的面积AAP2500ml水样中有一只草履虫,从中随机取出2ml水样放在显微镜下观察,发现草履虫的概率2501)(的体积试验全部结果构成区域对应区域的体积AAP3某人在7:00-8:00任一时刻随机到达单位,此人在7:00-7:10到达单位的概率61)(的长度试验全部结果构成区域对应区域的长度AAP如果每个事件发生的概率只与构成该事件区域的长度(面积和体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。几何概型的特点:(1)基本事件有无限多个;(2)基本事件发生是等可能的.几何概型定义在几何概型中,事件A的概率的计算公式如下()APA构成事件的区域长度(面积或体积)全部结果所构成的区域长度(面积或体积)问题:(1)x的取值是区间[1,4]中的整数,任取一个x的值,求“取得值大于2”的概率。古典概型P=2/4=1/2(2)x的取值是区间[1,4]中的实数,任取一个x的值,求“取得值大于2”的概率。123几何概型P=2/34总长度3•问题3:有根绳子长为3米,拉直后任意剪成两段,每段不小于1米的概率是多少?P(A)=1/3思考:怎么把随机事件转化为线段?例1.某人午觉醒来,发现表停了,他打开收音机想听电台整点报时,求他等待的时间不多于10分钟的概率.分析:因为电台每隔1小时报时一次,他在0~60之间任何一个时刻打开收音机是等可能的,但0~60之间有无穷个时刻,不能用古典概型的公式计算随机事件发生的概率。所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件。四、例题讲解0605010203040则事件A发生恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的求概率公式得P(A)=60-5060=16解:设A=等待的时间不多于10分钟即“等待报时的时间不多于10分钟”的概率为.16点评:打开收音机的时刻X是随机的,可以是0~60之间的任何时刻,且是等可能的.我们称X服从[0,60]上的均匀分布,X称为[0,60]上的均匀随机数.0102030405060例2(1)x和y取值都是区间[1,4]中的整数,任取一个x的值和一个y的值,求“x–y≥1”的概率。1234x1234y古典概型-1作直线x-y=1P=3/8例2(2)x和y取值都是区间[1,4]中的实数,任取一个x的值和一个y的值,求“x–y≥1”的概率。1234x1234y几何概型-1作直线x-y=1P=2/9ABCDEF例2假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?父亲离家时间报纸送到时间对于复杂的实际问题,解题的关键是要建立模型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概率问题,利用几何概率公式求解.变式引申:已知地铁列车每10分一班,在车站停1分,求乘客到达站台立即乘上车的概率。分析:前一列车刚走乘客同时此刻到达等11分后一列车来解:由几何概型可知,所求事件A的概率为P(A)=1/11例3(会面问题)甲、乙二人约定在12点到5点之间在某地会面,先到者等一个小时后即离去设二人在这段时间内的各时刻到达是等可能的,且二人互不影响。求二人能会面的概率。解:以X,Y分别表示甲乙二人到达的时刻,于是.50,50YX即点M落在图中的阴影部分。所有的点构成一个正方形,即有无穷多个结果。由于每人在任一时刻到达都是等可能的,所以落在正方形内各点是等可能的。012345yx54321.M(X,Y)二人会面的条件是:||,XY1012345yx54321.259254212252正方形的面积阴影部分的面积py-x=1y-x=-1例4甲、乙两人约定在下午1时到2时之间到某站乘公共汽车,又这段时间内有四班公共汽车它们的开车时刻分别为1:15、1:30、1:45、2:00.如果它们约定见车就乘;求甲、乙同乘一车的概率.假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在1时到2时的任何时刻到达车站是等可能的.xoy12见车就乘的概率为正方形面积阴影部分面积p22)12()41(4.4145:130:115:11215:130:145:1设x,y分别为甲、乙两人到达的时刻,则有,21x.21y解那末.0,0TyTx两人会面的充要条件为,tyx甲、乙两人相约在0到T这段时间内,在预定地点会面.先到的人等候另一个人,经过时间t(tT)后离去.设每人在0到T这段时间内各时刻到达该地是等可能的,且两人到达的时刻互不牵连.求甲、乙两人能会面的概率.一般会面问题解,,,刻乙两人到达的时分别为甲设yx故所求的概率为正方形面积阴影部分面积p222)(TtTT.)1(12Ttxoytxytyx若以x,y表示平面上点的坐标,则有tTT1.两根相距8m的木杆上系一根拉直绳子,并在绳子上挂一盏灯,求灯与两端距离都大于3m的概率.练一练解:记“灯与两端距离都大于3m”为事件A,4182A)事件A发生的概率P(由于绳长8m,当挂灯位置介于中间2m时,事件A发生,于是例4.取一个边长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.2a事件A,记“豆子落在圆内”为:解.4π豆子落入圆内的概率为答4π4aπa正方形面积圆的面积P(A)22数学应用数学应用(3)在1000mL的水中有一个草履虫,现从中任取出2mL水样放到显微镜下观察,发现草履虫的概率.0.002(2)在1万平方千米的海域中有40平方千米的大陆架储藏着石油,如果在海域中任意点钻探,钻到油层面的概率.0.004与面积成比例应用巩固:(1)在区间(0,10)内的所有实数中随机取一个实数a,则这个实数a7的概率为.0.3与长度成比例与体积成比例古典概型几何概型相同区别求解方法基本事件个数的有限性基本事件发生的等可能性基本事件发生的等可能性基本事件个数的无限性七、课堂小结几何概型的概率公式.()(APA构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度面积或体积)列举法几何测度法用几何概型解决实际问题的方法.(1)选择适当的观察角度,转化为几何概型.(2)把基本事件转化为与之对应区域的长度(面积、体积)(3)把随机事件A转化为与之对应区域的长度(面积、体积)(4)利用几何概率公式计算七、课堂小结1.公共汽车在0~5分钟内随机地到达车站,求汽车在1~3分钟之间到达的概率。分析:将0~5分钟这段时间看作是一段长度为5个单位长度的线段,则1~3分钟是这一线段中的2个单位长度。解:设“汽车在1~3分钟之间到达”为事件A,则52513)(AP所以“汽车在1~3分钟之间到达”的概率为52练习(1)豆子落在红色区域;(2)豆子落在黄色区域;(3)豆子落在绿色区域;(4)豆子落在红色或绿色区域;(5)豆子落在黄色或绿色区域。2.一张方桌的图案如图所示。将一颗豆子随机地扔到桌面上,假设豆子不落在线上,求下列事件的概率:3.取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于1米的概率有多大?解:如上图,记“剪得两段绳子长都不小于1m”为事件A,把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生。由于中间一段的长度等于绳子长的三分之一,所以事件A发生的概率P(A)=1/3。3m1m1m练习4.在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率。分析:点M随机地落在线段AB上,故线段AB为区域D。当点M位于图中的线段AC’上时,AM<AC,故线段AC’即为区域d。解:在AB上截取AC’=AC,于是P(AM<AC)=P(AM<AC’)22=ABAC=ABAC'=则AM小于AC的概率为22练习解:如图,当P所在的区域为正方形ABCD的内部(含边界),满足x2+y2≥4的点的区域为以原点为圆心,2为半径的圆的外部(含边界).故所求概率5.在半径为1的圆上随机地取两点,连成一条线,则其长超过圆内等边三角形的边长的概率是多少?BCDE.0解:记事件A={弦长超过圆内接等边三角形的边长},取圆内接等边三角形BCD的顶点B为弦的一个端点,当另一点在劣弧CD上时,|BE||BC|,而弧CD的长度是圆周长的三分之一,所以可用几何概型求解,有31)(AP则“弦长超过圆内接等边三角形的边长”的概率为31练习Goodbye……

1 / 37
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功