第1页共71页人民教育出版社A版必修5全册教案目录第一章解三角形.........................................................................................................................................2第1节.正弦定理和余弦定理...........................................................................................................................21.1.1.正弦定理...............................................................................................................................................21.1.2.余弦定理...............................................................................................................................................3第2节.应用举例...............................................................................................................................................6第二章数列...............................................................................................................................................12第1节.数列的概念与简单表示法.................................................................................................................12第2节.等差数列.............................................................................................................................................18第3节.等差数列的前N项和.........................................................................................................................24第4节.等比数列.............................................................................................................................................27第5节.等比数列的前N项和.........................................................................................................................29第三章不等式...........................................................................................................................................37第1节.不等式与不等关系.............................................................................................................................37第2节.一元二次不等式及其解法.................................................................................................................42第3节.二元一次不等式(组)与简单的线性规划问题.............................................................................473.3.1.二元一次不等式(组)与平面区域.................................................................................................473.3.2.简单的线性规划问题.........................................................................................................................53第4节.基本不等式2abab.............................................................................................................59第2页共71页第一章解三角形第1节.正弦定理和余弦定理一.1.1.正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.教学重点:正弦定理的探索和证明及其基本应用.教学难点:已知两边和其中一边的对角解三角形时判断解的个数.教学过程:一、复习准备:1.讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办?2.由已知的边和角求出未知的边和角,称为解三角形.已学习过任意三角形的哪些边角关系?(内角和、大边对大角)是否可以把边、角关系准确量化?→引入课题:正弦定理二、讲授新课:1.教学正弦定理的推导:①特殊情况:直角三角形中的正弦定理:sinA=casinB=cbsinC=1即c=sinsinsinabcABC.②能否推广到斜三角形?(先研究锐角三角形,再探究钝角三角形)当ABC是锐角三角形时,设边AB上的高是CD,根据三角函数的定义,有sinsinCDaBbA,则sinsinabAB.同理,sinsinacAC(思考如何作高?),从而sinsinsinabcABC.③*其它证法:证明一:(等积法)在任意斜△ABC当中S△ABC=111sinsinsin222abCacBbcA.两边同除以12abc即得:sinaA=sinbB=sincC.证明二:(外接圆法)如图所示,∠A=∠D,∴2sinsinaaCDRAD,同理sinbB=2R,sincC=2R.证明三:(向量法)过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量j得…..④正弦定理的文字语言、符号语言,及基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值.2.教学例题:①出示例1:在ABC中,已知045A,060B,42acm,解三角形.分析已知条件→讨论如何利用边角关系→示范格式→小结:已知两角一边②出示例2:06,45,2,,ABCcAabBC中,求和.分析已知条件→讨论如何利用边角关系→示范格式→小结:已知两边及一边对角abcOBCAD第3页共71页③练习:03,60,1,,ABCbBcaAC中,求和.在ABC中,已知10acm,14bcm,040A,解三角形(角度精确到01,边长精确到1cm)④讨论:已知两边和其中一边的对角解三角形时,如何判断解的数量?3.小结:正弦定理的探索过程;正弦定理的两类应用;已知两边及一边对角的讨论.三、巩固练习:1.已知ABC中,A=60°,3a,求sinsinsinabcABC.2.作业:教材练习1(2),2题.一.1.2.余弦定理教学要求:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.教学重点:余弦定理的发现和证明过程及其基本应用.教学难点:向量方法证明余弦定理.教学过程:一、复习准备:1.提问:正弦定理的文字语言?符号语言?基本应用?2.练习:在△ABC中,已知10c,A=45,C=30,解此三角形.→变式3.讨论:已知两边及夹角,如何求出此角的对边?二、讲授新课:1.教学余弦定理的推导:①如图在ABC中,AB、BC、CA的长分别为c、a、b.∵ACABBC,∴()()ACACABBCABBC222ABABBCBC222||||cos(180)ABABBCBBC222coscacBa.即2222cosbcaacB,→②试证:2222cosabcbcA,2222coscababC.③提出余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.用符号语言表示2222cosabcbcA,…等;→基本应用:已知两边及夹角④讨论:已知三边,如何求三角?→余弦定理的推论:222cos2bcaAbc,…等.cabABC第4页共71页⑤思考:勾股定理与余弦定理之间的关系?2.教学例题:①出示例1:在ABC中,已知23a,62c,060B,求b及A.分析已知条件→讨论如何利用边角关系→示范求b→讨论:如何求A?(两种方法)(答案:22b,060A)→小结:已知两边及夹角②在ABC中,已知13acm,8bcm,16ccm,解三角形.分析已知条件→讨论如何利用边角关系→分三组练习→小结:已知两角一边3.练习:①在ΔABC中,已知a=7,b=10,c=6,求A、B和C.②在ΔABC中,已知a=2,b=3,C=82°,解这个三角形.4.小结:余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;余弦定理的应用范围:①已知三边求三角;②已知两边及它们的夹角,求第三边.三、巩固练习:1.在ABC中,若222abcbc,求角A.(答案:A=1200)2.三角形ABC中,A=120°,b=3,c=5,解三角形.→变式:求sinBsinC;sinB+sinC.3.作业:教材练习1、2(1)题.§正弦定理和余弦定理(练习)教学要求:进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程:一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.(i)A=6,a=25,b=502;(ii)A=6,a=252,b=502;第5页共71页(iii)A=6,a=5063,b=502;(iiii)A=6,a=50,b=502.分两组练习→讨论: