高中数学选修2-3教案王国昌修订-1-高中数学选修2-3修订教案王国昌高中数学选修2-3教案王国昌修订-2-1.1基本计数原理(第一课时)教学目标:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学重点:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学过程一、复习引入:一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法?二、讲解新课:问题1春天来了,要从济南到北京旅游,有三种交通工具供选择:长途汽车、旅客列车和客机。已知当天长途车有2班,列车有3班。问共有多少种走法?设问1:从济南到北京按交通工具可分____类方法?第一类方法,乘火车,有___种方法;第二类方法,乘汽车,有___种方法;∴从甲地到乙地共有__________种方法设问2:每类方法中的每种一方法有什么特征?问题2:春天来了,要从济南到北京旅游,若想中途参观南开大学,已知从济南到天津有3种走法,从天津到北京有两种走法;问要从济南到北京共有多少种不同的方法?从济南到北京须经____再由_____到北京有____个步骤第一步,由济南去天津有___种方法第二步,由天津去北京有____种方法,设问2:上述每步的每种方法能否单独实现从济南村经天津到达北京的目的?1分类计数原理:(1)加法原理:如果完成一件工作有K种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有nK种方法可以完成。那么,完成这件工作共有n1+n2+……+nK种不同的方法。1.标准必须一致,而且全面、不重不漏!2“类”与“类”之间是并列的、互斥的、独立的即:它们两两的交集为空集!3每一类方法中的任何一种方法均能将这件事情从头至尾完成2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有nK种不同的方法。那么,完成这件工作共有n1×n2×……×nK种不同方法1标准必须一致、正确。2“步”与“步”之间是连续的,不间断的,缺一不可;但也不能重复、交叉。3若完成某件事情需n步,每一步的任何一种方法只能完成这件事的一部分且必须依次完成这n个步骤后,这件事情才算完成。高中数学选修2-3教案王国昌修订-3-三、例子例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?解:(1)从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2种方法奎屯王新敞新疆根据分类计数原理,不同取法的种数是4+3+2=9种奎屯王新敞新疆所以,从书架上任取1本书,有9种不同的取法;(2)从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本艺术书,有3种方法;第3步从第3层取1本体育书,有2种方法奎屯王新敞新疆根据分步计数原理,从书架的第1、2、3层各取1本书,不同取法的种数是43224种奎屯王新敞新疆所以,从书架的第1、2、3层各取1本书,有24种不同的取法奎屯王新敞新疆例2.一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数号码?解:每个拨号盘上的数字有10种取法,根据分步计数原理,4个拨号盘上各取1个数字组成的四位数字号码的个数是1010101010000N,所以,可以组成10000个四位数号码奎屯王新敞新疆例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?解:从3名工人中选1名上日班和1名上晚班,可以看成是经过先选1名上日班,再选1名上晚班两个步骤完成,先选1名上日班,共有3种选法;上日班的工人选定后,上晚班的工人有2种选法奎屯王新敞新疆根据分步技数原理,不同的选法数是326N种,6种选法可以表示如下:日班晚班甲乙甲丙乙甲乙丙丙甲丙乙所以,从3名工人中选出2名分别上日班和晚班,6种不同的选法奎屯王新敞新疆例4,若分给你10块完全一样的糖,规定每天至少吃一块,每天吃的块数不限,问共有多少种不同的吃法?n块糖呢?课堂小节:本节课学习了两个重要的计数原理及简单应用课堂练习:课后作业:高中数学选修2-3教案王国昌修订-4-1.1基本计数原理(第二课时)教学目标:会利用两个原理分析和解决一些简单的应用问题教学重点:会利用两个原理分析和解决一些简单的应用问题教学过程一、复习引入:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有nk种方法可以完成。那么,完成这件工作共有n1+n2+……+nk种不同的方法。2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有nK种不同的方法。那么,完成这件工作共有n1×n2×……×nk种不同方法二、讲解新课:例1书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?例2在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?解:取ba与取ab是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由分步计数原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据分类计数原理共有45+45=90种不同取法.例3如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为()A.180B.160C.96D.60奎屯王新敞新疆若变为图二,图三呢?(240种,5×4×4×4=320种)例575600有多少个正约数?有多少个奇约数?解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数.由于75600=24×33×52×7(1)75600的每个约数都可以写成lkjl7532的形式,其中40i,30j,20k,10l①③④②①②③④④③②①图一图二图三高中数学选修2-3教案王国昌修订-5-于是,要确定75600的一个约数,可分四步完成,即lkji,,,分别在各自的范围内任取一个值,这样i有5种取法,j有4种取法,k有3种取法,l有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成lkj753的形式,同上奇约数的个数为4×3×2=24个.课堂小节:本节课学习了两个重要的计数原理的应用课堂练习:课后作业:1.2.1排列(第一课时)教学目标:理解排列、排列数的概念,了解排列数公式的推导教学重点:理解排列、排列数的概念,了解排列数公式的推导教学过程一、复习引入:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有nk种方法可以完成。那么,完成这件工作共有n1+n2+……+nk种不同的方法。2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有nK种不同的方法。那么,完成这件工作共有n1×n2×……×nk种不同方法二、讲解新课:1.排列的概念:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m个元素的一个排列....奎屯王新敞新疆说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同奎屯王新敞新疆2.排列数的定义:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示奎屯王新敞新疆注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m个元素按照一定的...顺序..排成一列,不是数;“排列数”是指从n个不同元素中,任取m(mn)个元素的所有排列的个数,是一个数奎屯王新敞新疆所以符号mnA只表示排列数,而不表示具体的排列奎屯王新敞新疆3.排列数公式及其推导:高中数学选修2-3教案王国昌修订-6-求mnA以按依次填m个空位来考虑(1)(2)(1)mnAnnnnm,排列数公式:(1)(2)(1)mnAnnnnm=!()!nnm(,,mnNmn)说明:(1)公式特征:第一个因数是n,后面每一个因数比它前面一个少1,最后一个因数是1nm,共有m个因数;(2)全排列:当nm时即n个不同元素全部取出的一个排列奎屯王新敞新疆全排列数:(1)(2)21!nnAnnnn(叫做n的阶乘)奎屯王新敞新疆4.例子:例1.计算:(1)316A;(2)66A;(3)46A.解:(1)316A=161514=3360;(2)66A=6!=720;(3)46A=6543=360奎屯王新敞新疆例2.(1)若17161554mnA,则n,m.(2)若,nN则(55)(56)(68)(69)nnnn用排列数符号表示.解:(1)n17,m14.(2)若,nN则(55)(56)(68)(69)nnnn=1569nA.例3.(1)从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1)255420A;(2)5554321120A;(3)2141413182A奎屯王新敞新疆课堂小节:本节课学习了排列、排列数的概念,排列数公式的推导课堂练习:课后作业:高中数学选修2-3教案王国昌修订-7-1.2.1排列(第二课时)教学目标:掌握解排列问题的常用方法教学重点:掌握解排列问题的常用方法教学过程一、复习引入:1.排列的概念:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m个元素的一个排列....奎屯王新敞新疆说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同奎屯王新敞新疆2.排列数的定义:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示奎屯王新敞新疆注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m个元素按照一定的...顺序..排成一列,不是数;“排列数”是指从n个不同元素中,任取m(mn)个元素的所有排列的个数,是一个数奎屯王新敞新疆所以符号mnA只表示排列数,而不表示具体的排列奎屯王新敞新疆3.排列数公式及其推导:(1)(2)(1)mnAnnnnm(,,mnNmn)全排列数:(1)(2)21!nnAnnnn(叫做n的阶乘)奎屯王新敞新疆二、讲解新课:解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又