解三角形知识点归纳(附三角函数公式)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高中数学必修五第一章解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+bc;a-bc3、三角形中的基本关系:sin()sin,ABCcos()cos,ABCtan()tan,ABCsincos,cossin,tancot222222ABCABCABC4、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C的外接圆的半径,则有2sinsinsinabcRC.5、正弦定理的变形公式:①化角为边:2sinaR,2sinbR,2sincRC;②化边为角:sin2aR,sin2bR,sin2cCR;③::sin:sin:sinabcC;④sinsinsinsinsinsinabcabcCC.6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C中,有2222cosabcbc等,变形:222cos2bcabc等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角)9、三角形面积公式:111sinsinsin222CSbcabCac.=2R2sinAsinBsinC=Rabc4=2)(cbar=))()((cpbpapp10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是C的角、、C的对边,则:①若222abc,则90C;②若222abc,则90C;③若222abc,则90C.11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1)外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等)内心——三角形三内角的平分线相交于一点(内心到三边距离相等)12同角的三角函数之间的关系(1)平方关系:sin²α+cos²α=1(2)倒数关系:tanα·cotα=1(3)商的关系:sincoscot,cossintan特殊角的三角函数值三角函数值030456090sin02122231cos12322210tan03313不存在三角函数诱导公式:“(2k)”记忆口诀:“奇变偶不变,符号看象限”,是指(2k),k∈Z的三角函数值,当k为奇数时,正弦变余弦,余弦变正弦(正切,余切;正割、余割也同样);当k为偶数时,函数名不变。然后符号与‘将α看成锐角时原三角函数值的正负号’一致。三角函数的图像与性质:1-1y=sinx-32-52-727252322-2-4-3-2432-oyx1-1y=cosx-32-52-727252322-2-4-3-2432-oyxy=tanx322-32--2oyxxysinxytanxycos有关函数BxAy)sin(),(其中00A最大值是BA,最小值是AB,周期是2T,频率是2f,相位是x,初相是;其图象的对称轴是直线)(2Zkkx,凡是该图象与直线By的交点都是该图象的对称中心。函数y=sin(ωx+)的图象与函数y=sinx的图象的关系:由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。途径一:先平移变换再周期变换(伸缩变换)先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的1倍(ω>0),便得y=sin(ωx+)的图象。(先相位变换,再周期变换)途径二:先周期变换(伸缩变换)再平移变换。先将y=sinx的图象上各点的横坐标变为原来的1倍(ω>0),再沿x轴向左(>0)或向右(<0=平移||个单位,便得y=sin(ωx+)的图象。(先周期变换,再相位变换)对称轴与对称中心:sinyx的对称轴为2xk,对称中心为(,0)kkZ;cosyx的对称轴为xk,对称中心为2(,0)k;y=tanx图像的对称中心是(2k,0),无对称轴。★诱导公式★(以下k∈Z)定义域RR值域]1,1[]1,1[R周期性22奇偶性奇函数偶函数奇函数单调性]22,22[kk上为增函数;]223,22[kk上为减函数(Zk)]2,12[kk;上为增函数]12,2[kk上为减函数(Zk)kk2,2上为增函数(Zk)ZkkxRxx,21|且公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα同角三角函数基本关系同角三角函数的基本关系式商的关系:sinα/cosα=tanα平方关系:sin2α+cos2α=1两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin2(α/2)=(1-cosα)/2cos2(α/2)=(1+cosα)/2tan2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式万能公式sinα=2tan(α/2)/[1+tan2(α/2)]cosα=[1-tan2(α/2)]/[1+tan2(α/2)]tanα=2tan(α/2)/[1-tan2(α/2)]三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin3αcos3α=4cos3α-3cosαtan3α=(3tanα-tan3α)/(1-3tan2α)和差化积公式三角函数的和差化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]积化和差公式三角函数的积化和差公式sinα·cosβ=[sin(α+β)+sin(α-β)]/2cosα·sinβ=[sin(α+β)-sin(α-β)]/2cosα·cosβ=[cos(α+β)+cos(α-β)]/2sinα·sinβ=—[cos(α+β)-cos(α-β)]/2

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功