2012年中考数学总复习资料几何部分第一章:线段、角、相交线、平行线知识点:一、直线:直线是几何中不加定义的基本概念,直线的两大特征是“直”和“向两方无限延伸”。二、直线的性质:经过两点有一条直线,并且只有一条直线,直线的这条性质是以公理的形式给出的,可简述为:过两点有且只有一条直线,两直线相交,只有一个交点。三、射线:1、射线的定义:直线上一点和它们的一旁的部分叫做射线。2.射线的特征:“向一方无限延伸,它有一个端点。”四、线段:1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。2、线段的性质(公理):所有连接两点的线中,线段最短。五、线段的中点:1、定义如图1一1中,点B把线段AC分成两条相等的线段,点B叫做线段图1-1AC的中点。2、表示法:∵AB=BC∴点B为AC的中点或∵AB=21MAC∴点B为AC的中点,或∵AC=2AB,∴点B为AC的中点反之也成立∵点B为AC的中点,∴AB=BC或∵点B为AC的中点,∴AB=21AC或∵点B为AC的中点,∴AC=2BC六、角1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。要弄清定义中的两个重点①角是由两条射线组成的图形;②这两条射线必须有一个公共端点。另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。可以看出在起始位置的射线与终止位置的射线就形成了一个角。2.角的平分线定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。表示法有三种:如图1—2(1)∠AOC=∠BOC(2)∠AOB=2∠AOC=2∠COB(3)∠AOC=∠COB=21∠AOB七、角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。八、角的分类:(1)锐角:小于直角的角叫做锐角(2)直角:平角的一半叫做直角(3)钝角:大于直角而小于平角的角(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。(6)周角、平角、直角的关系是:l周角=2平角=4直角=360°九、相关的角:1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。十、角的性质1、对顶角相等。2、同角或等角的余角相等。3、同角或等角的补角相等。十一、相交线1、斜线:两条直线相交不成直角时,其中一条直线叫做另一条直线的斜线。它们的交点叫做斜足。2、两条直线互相垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。3、垂线:当两条直线互相垂直时,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。4、垂线的性质(l)过一点有且只有一条直线与己知直线垂直。(2)直线外一点与直线上各点连结的所有线段中,垂线段最短。简单说:垂线段最短。十二、距离1、两点的距离:连结两点的线段的长度叫做两点的距离。2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。说明:点到直线的距离和平行线的距离实际上是两个特殊点之间的距离,它们与点到直线的垂线段是分不开的。十三、平行线1、定义:在同一平面内,不相交的两条直线叫做平行线。2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。3、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。4、平行线的判定:(1)同位角相等,两直线平行。(2)内错角相等,两直线平行。(3)同旁内角互补,两直线平行。5、平行线的性质(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。6、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补。注意:当角的两边平行且方向相同(或相反)时,这两个角相等。当角的两边平行且一边方向相同另一方向相反时,这两个角互补。例题:方法1:利用特殊“点”和线段的长例1、已知:如图1-3,C是线段AB的中点,D是线段CB的中点,BD=1.2cm。求:AD的长。[思路分析]由D是CB中点,DB已知可求出CB,再由C点是AB中点可求出AB长,用AB减减去DB可求AD。解:略[规律总结]利用线段的特殊点如“中点”“比例点”求线段的长的方法是较为简便的解法。方法2:如何辨别角的个数与线段条数。例2、如图1-4在线段AE上共有5个点A、B、C、D、E怎样才数出所有线段,[思路分析]本问题如不认真审题会误以为有4点恰有4个空就是4条线段即AB、BC、CD、ED;而如果从一个端点出发、再找出另一个端点确定线段,就会发现有10条线段:即:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10条。[规律总结]此类型题如果做到不重不漏,最好方法是先从一个端点出发,再找出另一个端点确定线段。例3、如图1一5指出图形中直线AB上方角的个数(不含平角)[思路分析]此题有些同学不认真分析误认为就4个角,其实共有9个角。即:∠AOC、∠AOD、∠AOE、∠COD、∠COE、∠COB、∠DOE、∠DOB、∠EOB共9个角。[规律总结]从一个顶点引出多条射线时.为了确定角的个数,一般按边顺序分类统计,避免既不重复又不遗漏。方法3:用代数法求角度例4、已知一个锐角的余角,是这个锐角的补角的61,求这个角。[思路分析]本题涉及到的角是锐角同它的余角及补角。根据互为余角,互为补角的概念,考虑它们在数量上有什么关系?设锐角为x,则它的余角为90–x。,它的补角为180–x,这就可以列方程了。解:略[规律总结]有关余角、补角的问题,一般都用代数方法先设未知数,再依题意列出方程,求出结果。方法4:添加辅助线平移角例5、已知:如图l—6,AB∥ED求证:∠B+∠BCD+∠D=360°[思路分析]我们知道只有周角是等于360°,而图中又出现了与∠BCD相关的以C为顶点的周角,若能把∠B、∠D移到与∠BCD相邻且以C为顶点的位置,即可把∠B、∠BCD和∠D三个角组成一分周角,则可推出结论。证时:略规律总结]此题虽是三种证法但思想是一样的,都是通过加辅助线,平移角达到目的,这种处理方法在几何中常常用到。几何部分第二章:三角形知识点:一、关于三角形的一些概念由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫三角形的边;相邻两边的公共端点叫三角形的顶点;相邻两边所组成的角叫三角形的内角,简称三角形的角。1、三角形的角平分线。三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离)2、三角形的中线三角形的中线也是一条线段(顶点到对边中点间的距离)3.三角形的高三角形的高线也是一条线段(顶点到对边的距离)注意:三角形的中线和角平分线都在三角形内。如图2-l,AD、BE、CF都是么ABC的角平分线,它们都在△ABC内如图2-2,AD、BE、CF都是△ABC的中线,它们都在△ABC内而图2-3,说明高线不一定在△ABC内,图2—3—(1)图2—3—(2)图2-3一(3)图2-3—(1),中三条高线都在△ABC内,图2-3-(2),中高线CD在△ABC内,而高线AC与BC是三角形的边;图2-3一(3),中高线BE在△ABC内,而高线AD、CF在△ABC外。三、三角形三条边的关系三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。三角形接边相等关系来分类:三角形等边三角形三角形底边和腰不相等的等腰等腰三角形不等边三角形三角形用集合表示,见图2-4推论三角形两边的差小于第三边。不符合定理的三条线段,不能组成三角形的三边。例如三条线段长分别为5,6,1人因为5+6<12,所以这三条线段,不能作为三角形的三边。三、三角形的内角和定理三角形三个内角的和等于180°由定理可知,三角形的二个角已知,那么第三角可以由定理求得。如已知△ABC的两个角为∠A=90°,∠B=40°,则∠C=180°–90°–40°=50°由定理可以知道,三角形的三个内角中,只可能有一个内角是直角或钝角。推论1:直角三角形的两个锐角互余。三角形按角分类:钝角三角形锐角三角形斜三角形直角三角形三角形用集合表示,见图三角形一边与另一边的延长线组成的角,叫三角形的外角。推论2:三角形的一个外角等于和它不相邻的两个内角的和。推论3:三角形的一个外角大于任何一个和它不相邻的内角。例如图2—6中∠1>∠3;∠1=∠3+∠4;∠5>∠3+∠8;∠5=∠3+∠7+∠8;∠2>∠8;∠2=∠7+∠8;∠4>∠9;∠4=∠9+∠10等等。四、全等三角形能够完全重合的两个图形叫全等形。两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。全等用符号“≌”表示△ABC≌△A`B`C`表示A和A`,B和B`,C和C`是对应点。全等三角形的对应边相等;全等三角形的对应角相等。如图2—7,△ABC≌△A`B`C`,则有A、B、C的对应点A`、B`、C`;AB、BC、CA的对应边是A`B`、B`C`、C`A`。∠A,∠B,∠C的对应角是∠A`、∠B`、∠C`。∴AB=A`B`,BC=B`C`,CA=C`A`;∠A=∠A`,∠B=∠B`,∠C=∠C`五、全等三角形的判定1、边角边公理:有两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)注意:一定要是两边夹角,而不能是边边角。2、角边角公理:有两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角“或“ASA”)3、推论有两角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边’域“AAS”)4、边边边公理有三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)由边边边公理可知,三角形的重要性质:三角形的稳定性。除了上面的判定定理外,“边边角”或“角角角”都不能保证两个三角形全等。5、直角三角形全等的判定:斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边,直角边”或“HL”)六、角的平分线定理1、在角的平分线上的点到这个角的两边的距离相等。定理2、一个角的两边的距离相等的点,在这个角的平分线上。由定理1、2可知:角的平分线是到角的两边距离相等的所有点的集合。可以证明三角形内存在一个点,它到三角形的三边的距离相等这个点就是三角形的三条角平分线的交点(交于一点)在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互为逆命题,如果把其中的一个做原命题,那么另一个叫它的逆命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫互逆定理,其中一个叫另一个的逆定理。例如:“两直线平行,同位角相等”和“同位角相等,两直线平行”是互逆定理。一个定理不一定有逆定理,例如定理:“对顶角相等”就没逆定理,因为“相等的角是对顶角”这是一个假命颗。七、基本作图限定用直尺和圆规来画图,称为尺规作网_最基本、最常用的尺规作图.通常称为基本作图,例如做一条线段等于己知线段。1、作一个角等于已知角:作法是使三角形全等(SSS),从而得到对应角相等;2、平分已知角