1ECABDP立体几何垂直总结1、线线垂直的判断:线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。2、线面垂直的判断:(1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。(3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。(4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。3、面面垂直的判断:一个平面经过另一个平面的垂线,这两个平面互相垂直。证明线线垂直的常用方法:例1、(等腰三角形三线合一)如图,已知空间四边形ABCD中,,BCACADBD,E是AB的中点。求证:(1)AB平面CDE;(2)平面CDE平面ABC。证明:(1)BCACCEABAEBE同理,ADBDDEABAEBE又∵CEDEE∴AB平面CDE(2)由(1)有AB平面CDE又∵AB平面ABC,∴平面CDE平面ABC例2、(菱形的对角线互相垂直、等腰三角形三线合一)已知四棱锥PABCD的底面是菱形.PBPD,E为PA的中点.(Ⅰ)求证:PC∥平面BDE;(Ⅱ)求证:平面PAC平面BDE.AEDBC2例3、(线线、线面垂直相互转化)已知ABC中90ACB,SA面ABC,ADSC,求证:AD面SBC.证明:90ACB∵°BCAC又SA面ABCSABCBC面SACBCAD又,SCADSCBCCAD面SBC例4、(直径所对的圆周角为直角)如图2所示,已知PA垂直于圆O在平面,AB是圆O的直径,C是圆O的圆周上异于A、B的任意一点,且PAAC,点E是线段PC的中点.求证:AE平面PBC.证明:∵PAO所在平面,BC是O的弦,∴BCPA.又∵AB是O的直径,ACB是直径所对的圆周角,∴BCAC.∵,PAACAPA平面PAC,AC平面PAC.∴BC平面PAC,AE平面PAC,∴AEBC.∵PAAC,点E是线段PC的中点.∴AEPC.∵PCBCC,PC平面PBC,BC平面PBC.∴AE平面PBC.例5、(证明所成角为直角)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,AE⊥BD,CB=CD=CF.求证:BD⊥平面AED;证明因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,所以∠ADC=∠BCD=120°.又CB=CD,所以∠CDB=30°,因此∠ADB=90°,即AD⊥BD.又AE⊥BD,且AE∩AD=A,AE,AD⊂平面AED,所以BD⊥平面AED.SDCBAACBPEO图23例6、(勾股定理的逆定理)如图7-7-5所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.例7、(三垂线定理)证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D证明:连结ACBDAC∵⊥∴AC为A1C在平面AC上的射影BDACACBCACBCD11111同理可证平面练习;1、如图在三棱锥P—ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.证明:AP⊥BC;D1C1A1B1DCAB42、直三棱柱ABC-A1B1C1中,AC=BC=12AA1,D是棱AA1的中点,DC1⊥BD.证明:DC1⊥BC。3.如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4.将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.(1)求证:AB⊥DE;(2)求三棱锥EABD的侧面积..4、在正三棱柱111CBAABC中,若AB=2,11AA,求点A到平面BCA1的距离。55、如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD..66、如图7-5-9(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB.(2)求证:A1F⊥BE.(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.7ECABDP立体几何垂直总结1、线线垂直的判断:线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。2、线面垂直的判断:(1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。(3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。(4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。3、面面垂直的判断:一个平面经过另一个平面的垂线,这两个平面互相垂直。证明线线垂直的常用方法:例1、(等腰三角形三线合一)如图,已知空间四边形ABCD中,,BCACADBD,E是AB的中点。求证:(1)AB平面CDE;(2)平面CDE平面ABC。证明:(1)BCACCEABAEBE同理,ADBDDEABAEBE又∵CEDEE∴AB平面CDE(2)由(1)有AB平面CDE又∵AB平面ABC,∴平面CDE平面ABC例2、(菱形的对角线互相垂直、等腰三角形三线合一)已知四棱锥PABCD的底面是菱形.PBPD,E为PA的中点.(Ⅰ)求证:PC∥平面BDE;(Ⅱ)求证:平面PAC平面BDE.AEDBC8例3、(线线、线面垂直相互转化)已知ABC中90ACB,SA面ABC,ADSC,求证:AD面SBC.证明:90ACB∵°BCAC又SA面ABCSABCBC面SACBCAD又,SCADSCBCCAD面SBC例4、(直径所对的圆周角为直角)如图2所示,已知PA垂直于圆O在平面,AB是圆O的直径,C是圆O的圆周上异于A、B的任意一点,且PAAC,点E是线段PC的中点.求证:AE平面PBC.证明:∵PAO所在平面,BC是O的弦,∴BCPA.又∵AB是O的直径,ACB是直径所对的圆周角,∴BCAC.∵,PAACAPA平面PAC,AC平面PAC.∴BC平面PAC,AE平面PAC,∴AEBC.∵PAAC,点E是线段PC的中点.∴AEPC.∵PCBCC,PC平面PBC,BC平面PBC.∴AE平面PBC.例5、(证明所成角为直角)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,AE⊥BD,CB=CD=CF.求证:BD⊥平面AED;证明因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,所以∠ADC=∠BCD=120°.又CB=CD,所以∠CDB=30°,因此∠ADB=90°,即AD⊥BD.又AE⊥BD,且AE∩AD=A,AE,AD⊂平面AED,所以BD⊥平面AED.SDCBAACBPEO图29例6、(勾股定理的逆定理)如图7-7-5所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.例7、(三垂线定理)证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D证明:连结ACBDAC∵⊥∴AC为A1C在平面AC上的射影BDACACBCACBCD11111同理可证平面练习;1、如图在三棱锥P—ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.证明:AP⊥BC;D1C1A1B1DCAB102、直三棱柱ABC-A1B1C1中,AC=BC=12AA1,D是棱AA1的中点,DC1⊥BD.(1)证明:DC1⊥BC;证明由题设知,三棱柱的侧面为矩形.由于D为AA1的中点,故DC=DC1.又AC=12AA1,可得DC21+DC2=CC21,所以DC1⊥DC.又DC1⊥BD,DC∩BD=D,所以DC1⊥平面BCD.因为BC⊂平面BCD,所以DC1⊥BC.3.如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4.将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.(1)求证:AB⊥DE;(2)求三棱锥EABD的侧面积.(1)证明:在△ABD中,∵AB=2,AD=4,∠DAB=60°,设F为AD边的中点,连接FB,∴△ABF为等边三角形,∠AFB=60°,又DF=BF=2,∴△BFD为等腰三角形.∴∠FDB=30°,故∠ABD=90°.∴AB⊥BD.又平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,AB⊂平面ABD,∴AB⊥平面EBD.∵DE⊂平面EBD,∴AB⊥DE.(2)【解析】由(1)知AB⊥BD,∵CD∥AB,∴CD⊥BD,从而DE⊥BD.在Rt△DBE中,∵DB=23,DE=DC=AB=2,∴S△DBE=12DB·DE=23.∵AB⊥平面EBD,BE⊂平面EBD,∴AB⊥BE.∵BE=BC=AD=4,∴S△ABE=12AB·BE=4.∵DE⊥BD,平面EBD⊥平面ABD,∴ED⊥平面ABD.而AD⊂平面ABD,∴ED⊥AD,∴S△ADE=12AD·DE=4.综上,三棱锥EABD的侧面积S=8+23.4、在正三棱柱111CBAABC中,若AB=2,11AA,求点A到平面BCA1的距离。116如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.证明(1)∵PA⊥底面ABCD,∴CD⊥PA.又矩形ABCD中,CD⊥AD,且AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD.(2)取PD的中点G,连接AG,FG.又∵G、F分别是PD、PC的中点,∴GF綊12CD,∴GF綊AE,∴四边形AEFG是平行四边形,∴AG∥EF.∵PA=AD,G是PD的中点,∴AG⊥PD,∴EF⊥PD,∵CD⊥平面PAD,AG平面PAD.∴CD⊥AG.∴EF⊥CD.∵PD∩CD=D,∴EF⊥平面PCD.6、如图7-5-9(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB.(2)求证:A1F⊥BE.(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.12【规范解答】(1)因为D,E分别为AC,AB的中点,所以DE∥BC.2分又因为DE⊄平面A1CB,所以DE∥平面A1CB.4分(2)由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.6分又A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.9分(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.又DP∩DE=D,所以A1C⊥平面DEP.12分从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.14分