二次函数经典例题及答案1.已知抛物线的顶点为P(-4,-252),与x轴交于A、B两点,与y轴交于点C,其中B点坐标为(1,0)。(1)求这条抛物线的函数关系式;(2)若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ADQ为等腰三角形?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由.y=12x2+4x-92;存在点Q1(-1,-4),Q2(25-9,-5),Q3(-132,-54).析试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a(x+4)2-252,然后把点B的坐标代入解析式求出a的值,即可得解;(2)先根据顶点坐标求出点D的坐标,再根据抛物线解析式求出点A、C的坐标,从而得到OA、OC、AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出∠OAC的正弦值与余弦值,再分①AD=Q1D时,过Q1作Q1E1⊥x轴于点E1,根据等腰三角形三线合一的性质求出AQ1,再利用∠OAC的正弦求出Q1E1的长度,根据∠OAC的余弦求出AE1的长度,然后求出OE1,从而得到点Q1的坐标;②AD=AQ2时,过Q2作Q2E2⊥x轴于点E2,利用∠OAC的正弦求出Q2E2的长度,根据∠OAC的余弦求出AE2的长度,然后求出OE2,从而得到点Q2的坐标;③AQ3=DQ3时,过Q3作Q3E3⊥x轴于点E3,根据等腰三角形三线合一的性质求出AE3的长度,然后求出OE3,再由相似三角形对应边成比例列式求出Q3E3的长度,从而得到点Q3的坐标.试题解析:(1)∵抛物线顶点坐标为(-4,-252),∴设抛物线解析式为y=a(x+4)2-252∵抛物线过点B(1,0),∴a(1+4)2-252=0,解得a=,所以,抛物线解析式为y=(x+4)2-252,即y=x2+4x-;(2)存在点Q1(-1,-4),Q2(2-9,-),Q3(-,-).理由如下:∵抛物线顶点坐标为(-4,-252),∴点D的坐标为(-4,0),令x=0,则y=-,令y=0,则x2+4x-=0,整理得,x2+8x-9=0,解得x1=1,x2=-9,∴点A(-9,0),C(0,-),∴OA=9,OC=,AD=-4-(-9)=-4+9=5,在Rt△AOC中,根据勾股定理,AC=∴sin∠OAC=cos∠OAC=,①AD=Q1D时,过Q1作Q1E1⊥x轴于点E1,根据等腰三角形三线合一的性质,AQ1=2•ADcos∠OAC=2×5×,Q1E1=AQ1•sin∠OAC=×=4,AE1=AQ1•cos∠OAC=×=8,所以,OE1=OA-AE1=9-8=1,所以,点Q1的坐标为(-1,-4);②AD=AQ2时,过Q2作Q2E2⊥x轴于点E2,Q2E2=AQ2•sin∠OAC=5×=,AE2=AQ2•cos∠OAC=5×=2,所以,OE2=OA-AE2=9-2,所以,点Q2的坐标为(2-9,-);③AQ3=DQ3时,过Q3作Q3E3⊥x轴于点E3,则AE3=AD=×5=,所以,OE3=9-=,∵Q3E3⊥x轴,OC⊥OA,∴△AQ3E3∽△ACO,∴,即,解得Q3E3=,所以,点Q3的坐标为(-,-),综上所述,在线段AC上存在点Q1(-1,-4),Q2(2-9,-),Q3(-,-),使得△ADQ为等腰三角形.2.如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=﹣x2+bx+c经过B,C两点,点A是抛物线与x轴的另一个交点.(1)求B、C两点坐标;(2)求此抛物线的函数解析式;(3)在抛物线上是否存在点P,使S△PAB=S△CAB,若存在,求出P点坐标,若不存在,请说明理由.1)B(3,0)C(0,3)(2)此抛物线的解析式为y=﹣x2+2x+3.(3)存在这样的P点,其坐标为P(0,3),(2,3)(1+,﹣3)或(1﹣,﹣3).试题分析:(1)已知了过B、C两点的直线的解析式,当x=0时可求出C点的坐标,当y=0是可求出B点的坐标.(2)由于抛物线的解析式中只有两个待定系数,因此将B、C两点的坐标代入抛物线中即可求出抛物线的解析式.(3)根据(2)的抛物线的解析式可得出A点的坐标,由此可求出AB的长,由于S△PAB=S△CAB,而AB边为定值.由此可求出P点的纵坐标,然后将P点的纵坐标代入抛物线的解析式中即可求出P点的坐标.试题解析:(1)∵直线y=﹣x+3经过B、C∴当x=0时y=3当y=0时x=3∴B(3,0)C(0,3)(2)∵抛物线y=﹣x2+bx+c经过B、C∴.∴b=2,c=3.∴此抛物线的解析式为y=﹣x2+2x+3.(3)当y=0时,﹣x2+2x+3=0;x1=﹣1,x2=3.∴A(﹣1,0)设P(x,y)∵S△PAB=S△CAB∴×4×|y|=×4×3∴y=3或y=﹣3①当y=3时,3=﹣x2+2x+3∴x1=0,x2=2P(0,3)或(2,3)②当y=﹣3时,﹣3=﹣x2+2x+3∴x1=1+,x2=1﹣∴P(1+,﹣3)或(1﹣,﹣3).因此存在这样的P点,其坐标为P(0,3),(2,3)(1+,﹣3)或(1﹣,﹣3).3.已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.(1)所求抛物线的函数表达式是y=x2﹣x+2.(2)当x=3时,线段PQ的长度取得最大值.最大值是1.(3)P(3,0)或P(,)或P(,).析试题分析:(1)已知了A,B的坐标,可用待定系数法求出函数的解析式.(2)①QP其实就是一次函数与二次函数的差,二次函数的解析式在(1)中已经求出,而一次函数可根据B,C的坐标,用待定系数法求出.那么让一次函数的解析式减去二次函数的解析式,得出的新的函数就是关于PQ,x的函数关系式,那么可根据函数的性质求出PQ的最大值以及相对应的x的取值.(3)分三种情况进行讨论:当∠QOA=90°时,Q与C重合,显然不合题意.因此这种情况不成立;当∠OAQ=90°时,P与A重合,因此P的坐标就是A的坐标;当∠OQA=90°时,如果设QP与x轴的交点为D,那么根据射影定理可得出DQ2=OD•DA.由此可得出关于x的方程即可求出x的值,然后将x代入二次函数式中即可得出P的坐标.试题解析:(1)∵抛物线过A(3,0),B(6,0),∴,解得:,∴所求抛物线的函数表达式是y=x2﹣x+2.(2)①∵当x=0时,y=2,∴点C的坐标为(0,2).设直线BC的函数表达式是y=kx+b.则有,解得:.∴直线BC的函数表达式是y=﹣x+2.∵0<x<6,点P、Q的横坐标相同,∴PQ=yQ﹣yP=(﹣x+2)﹣(x2﹣x+2)=﹣x2+x=﹣(x﹣3)2+1∴当x=3时,线段PQ的长度取得最大值.最大值是1.②解:当∠OAQ=90°时,点P与点A重合,∴P(3,0)当∠QOA=90°时,点P与点C重合,∴x=0(不合题意)当∠OQA=90°时,设PQ与x轴交于点D.∵∠ODQ+∠ADQ=90°,∠QAD+∠AQD=90°,∴∠OQD=∠QAD.又∵∠ODQ=∠QDA=90°,∴△ODQ∽△QDA.∴,即DQ2=OD•DA.∴(﹣x+2)2=x(3﹣x),10x2﹣39x+36=0,∴x1=,x2=,∴y1=×()2﹣+2=;y2=×()2﹣+2=;∴P(,)或P(,).∴所求的点P的坐标是P(3,0)或P(,)或P(,).4.如图所示,在平面直角坐标系中,抛物线()经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B,D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果P点的坐标为(,),△PBE的面积为,求与的函数关系式,写出自变量的取值范围.(1),D(1,4);(2)().解析试题分析:(1)本题需先根据抛物线经过A(﹣1,0)、B(3,0)两点,分别求出a、b的值,再代入抛物线即可求出它的解析式.(2)本题首先设出BD解析式,再把B、D两点坐标代入求出k、b的值,得出BD解析式,再根据面积公式即可求出最大值.试题解析:(1)∵抛物线()经过A(﹣1,0)、B(3,0)两点∴把(﹣1,0)B(3,0)代入抛物线得:,,∴抛物线解析式为:,∵=,∴顶点D的坐标为(1,4);(2)设直线BD解析式为:(),把B、D两点坐标代入,得:,解得5.如图,抛物线与x轴相交于B,C两点,与y轴相交于点A,点P(,)(a是任意实数)在抛物线上,直线经过A,B两点.(1)求直线AB的解析式;(2)平行于y轴的直线交直线AB于点D,交抛物线于点E.①直线(0≤t≤4)与直线AB相交F,与抛物线相交于点G.若FG∶DE=3∶4,求t的值;②将抛物线向上平移m(m>0)个单位,当EO平分∠AED时,求m的值.1);(2)①1或3;②.解析试题分析:(1)根据点P的坐标,可得出抛物线解析式,然后求出A、B、C的坐标,利用待定系数法求出直线AB的解析式;(2)①根据点E(2,5),D(2,1),G(,),F(,),表示出DE、FG,再由FG:DE=3:4,可得出t的值;②设点A(0,2+m),则点E(2,5+m),作AH⊥DE,垂足为H,在Rt△AEH中利用勾股定理求出AE,根据EO平分∠AED及平行线的性质可推出∠AEO=∠AOE,AO=AE,继而可得出m的值.试题解析:(1)∵P(,)(a是实数)在抛物线上,∴抛物线的解析式为=﹣,当时,即,解得,,当x=0时,y=2.∴A(0,2),B(4,0),C(,0),将点A、B的坐标代入,得:∴,解得:,故直线AB的解析式为;(2)①∵点E(2,5),D(2,1),G(,),F(,),∴DE=4,FG==,∵FG:DE=3:4,∴,解得,.②设点A(0,2+m),则点E(2,5+m),作AH⊥DE,垂足为H,∴=,即AE=,∵EO平分∠AED,∴∠AEO=∠DEO,∵AO∥ED,∴∠DEO=∠AOE,∴∠AEO=∠AOE,∴AO=AE,即,解得m=.6.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(–1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当P,Q运动t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状并求说明理由.(3)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由(1)y=x2﹣x﹣4.C(0,﹣4);(2)四边形APDQ为菱形;(3)存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).解析试题分析:(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式及C坐标.(2)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、D对称,则AP=DP,AQ=DQ,易得四边形四边都相等,即菱形.(3)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分线,画圆易得E大致位置,设边长为x,表示其他边后利用勾股定理易得E坐标.试题解析:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)四边形APDQ为菱形.理由如下:如图,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形(3)存在.如图1,过点Q作QD⊥OA于D,此时