2017年中考旋转--平移专题训练

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

111.(2017•聊城)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′ACD.B′C平分∠BB′A′【考点】R2:旋转的性质.【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选C.18.(2017•泰安)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()2A.30°B.60°C.90°D.120°【考点】R2:旋转的性质.【分析】根据题意确定旋转中心后即可确定旋转角的大小.【解答】解:如图:显然,旋转角为90°,故选C.11.(2017•贵港)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4B.3C.2D.1【考点】R2:旋转的性质.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.310.(2017·无锡)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()[来~*源#:中国教育出版网&%]A.2B.C.D.【考点】PB:翻折变换(折叠问题);KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,[中国教育出版^&@网*#]∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.410.(2017▪福建)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段AB和点P,则点P所在的单位正方形区域是()A.1区B.2区C.3区D.4区【答案】D【解析】如图,根据题意可得旋转中心O,旋转角是90°,旋转方向为逆时针,因此可知点P的对应点落在了4区,故选D.O点睛:本题主要考查图形的旋转,能根据题意正确地确定旋转中心、旋转方向、旋转角是解题的关键.9.(2017·天津)如图,将ABC绕点B顺时针旋转060得DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠EB.∠CBE=∠CC.AD∥BCD.AD=BC【答案】C.5.(2017·青岛)如图,若将△ABC绕点O逆时针旋转90°则顶点B的对应点B1的坐标为()A.)2,4(B.)4,2(C.)2,4(D.)4,2(5【答案】B[来%源:中教#~网^&]【解析】试题分析:将△ABC绕点O逆时针旋转90°后,图形如下图[中&国#教^育@*出版网]所以B1的坐标为)4,2([中^国&%教#育出版网*]5.(2017•菏泽)如图,将tABCR绕直角顶点C顺时针旋转90,得到''ABC,连接'AA,若125,则'BAA的度数是()A.55B.60C.65D.70【答案】C【解析】试题分析:利用旋转,∠BAC=∠B'A'C,AC=CA',∴三角形ACA'是等腰直角三角形,∴∠BAC=∠B'A'C=45°-25°,∴'BAA=65,故选C考点:旋转;等腰直角三角形性质17.(2017•威海)如图,A点的坐标为(﹣1,5),B点的坐标为(3,3),C点的坐标为(5,3),D点的坐标为(3,﹣1),小明发现:线段AB与线段CD存在一种特殊关系,即其中一6条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是(1,1)或(4,4).【分析】分点A的对应点为C或D两种情况考虑:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心.此题得解.【解答】解:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示,∵A点的坐标为(﹣1,5),B点的坐标为(3,3),∴E点的坐标为(1,1);②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示,∵A点的坐标为(﹣1,5),B点的坐标为(3,3),∴M点的坐标为(4,4).综上所述:这个旋转中心的坐标为(1,1)或(4,4).故答案为:(1,1)或(4,4).16.(2017•上海)一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180),如果EF∥AB,那么n的值是45.7【分析】分两种情形讨论,分别画出图形求解即可.【解答】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为45【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.(2017·眉山)△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是120°.【考点】R3:旋转对称图形.【分析】根据旋转的性质及等边三角形的性质求解.【解答】解:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为:120°.15.(2017▪北京)如图,在平面直角坐标系xOy中,AOB可以看作是OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD得到AOB的过程:.8【答案】将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).【解析】试题分析:观察图形即可,将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB,注意是顺时针还是逆时针旋转.考点:几何变换的类型13.(2017▪山西)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2).将△ABC向右平移4个单位,得到ABC,点A、B、C的对应点分别为,,ABC,再将ABC绕点B顺时针旋转90,得到ABC,点,,ABC的对应点分别为,,ABC,则点A的坐标为.【答案】(6,0).12.(2017•宜宾)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是60°.【分析】如图,首先运用旋转变换的性质求出∠AOC的度数,结合∠AOB=27°,即可解决问题.【解答】解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=15°,∴∠AOD=45°+15°=60°,故答案为:60°.914.(2017•黄冈)已知:如图,在AOB中,090,3,4AOBAOcmBOcm,将AOB绕顶点O,按顺时针方向旋转到11AOB处,此时线段1OB与AB的交点D恰好为AB的中点,则线段1BDcm.【考点】直角三角形,勾股定理,旋转【分析】由勾股定理,确定圆锥的母线长,再由表面积=πrl确定其表面积.【解答】解:∵090,3,4AOBAOcmBOcm∴AB=5,∵D恰好为AB的中点∴OD=2.5∵将AOB绕顶点O,按顺时针方向旋转到11AOB处∴OB1=OB=4∴1BD1.5故答案为:1.5.21.(2017▪南宁)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.【解析】(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.10考点:作图﹣轴对称变换;待定系数法求一次函数解析式;作图﹣平移变换.20.(2017•宁夏)在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.【分析】(1)根据图形平移的性质画出平移后得的△A1B1C1即可;(2)根据图形旋转的性质画出旋转后的△A2B2C2即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.1124.(2017·广安)在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点式为相连)(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过反折、平移、旋转后能够重合,均视为一种方案)【考点】R9:利用旋转设计图案;P8:利用轴对称设计图案;Q5:利用平移设计图案.【分析】利用轴对称图形的性质用5个小正方形组成一个轴对称图形即可.【解答】解:如图..20.(2017•宁波)在44´的方格纸中,ABC△的三个顶点都在格点上.(1)在图1中画出与ABC△成轴对称且与ABC△有公共边的格点三角形(画出一个即可);(2)将图2中的ABC△绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:根据题意画出图形即可.试题解析:(1)如图所示:或12(2)如图所示:考点:1.轴对称图形;2.旋转.18.(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC和DEF(顶点为网格线的交点),以及过格点的直线l.(1)将ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出DEF关于直线l对称的三角形

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功