现代分析-2010-9(XPS)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1一、概述X射线光电子能谱(XPS,X-rayPhotoelectronSpectroscopy)是一种基于光电效应的电子能谱,它是利用X射线光子激发出物质表面原子的内层电子,通过对这些电子进行能量分析而获得表面成分信息的一种能谱。§8-2X射线光电子能谱原理及应用《现代材料分析技术》2XPS=ESCA这种谱仪早期取名为化学分析电子能谱(ESCA,ElectronSpectroscopyforChemicalAnalysis),这一称谓仍在分析领域内广泛使用。《现代材料分析技术》概述3XPS是瑞典K.Siegbahn教授及其同事经近20年潜心研究,于六十年代中期研制开发的一种新型表面分析方法。他们发现了内层电子结合能的位移现象,解决了电子能量分析等技术问题,测定了元素周期表中各元素轨道结合能,并成功地应用于许多实际的化学体系。鉴于K.Siegbahn教授对发展XPS领域做出的重大贡献,他被授予1981年诺贝尔物理学奖。《现代材料分析技术》概述4概述X射线光电子谱是重要的表面分析技术之一。它不仅能探测表面的化学组成,而且可以确定各元素的化学状态,在化学、材料科学及表面科学中得以广泛应用。随着科技发展,XPS在不断完善。目前,已开发出的小面积X射线光电子能谱,大大提高了XPS的空间分辨能力。《现代材料分析技术》5二、XPS原理1.光电效应在光的照射下,电子从金属表面逸出的现象,称为光电效应。《现代材料分析技术》LIIILILIIKh2p1/22s2p3/21sPhotoelektron(1s)62、光电子的能量根据Einstein的能量关系式有:h=EB+EK其中——光子的频率,h——入射光子能量EB——内层电子的轨道结合能或电离能;EK——被入射光子所激发出的光电子的动能。《现代材料分析技术》7实际的X射线光电子能谱仪中的能量关系为其中ФS——谱仪的功函数,光电子逸出表面所需能量;A——样品的功函数,光电子输运过程中因非弹性散射而损失的能量。AEEhsKB《现代材料分析技术》8可见,当入射X射线能量一定,测出功函数和电子的动能,即可求出电子的结合能。由于只有表面处的光电子才能从固体中逸出,因而测得的电子结合能必然反应了表面化学成份的情况。这是光电子能谱仪的基本测试原理。《现代材料分析技术》93.逃逸深度(λm)与俄歇电子相同,只有那些来自表面附近在逃逸深度以内的光电子才没有经过散射而损失能量,才对确定Eb的谱峰有所贡献。对于XPS有用的光电子能量100~1200eVλm=0.5~2.0nm(金属)=4~10nm(高聚物)《现代材料分析技术》10逃逸深度与逸出角有关θ为探测角,出射方向与面法线夹角当θ=0,垂直表面射出的电子来自最大逸出深度;当θ≈90,近似平行于表面射出的电子纯粹来自最外表面几个原子层。改变探测角θ可调整表面灵敏度cosm《现代材料分析技术》113.化学位移化学位移——由于原子所处的化学环境不同而引起的内层电子结合能的变化,在谱图上表现为谱峰的位移,这一现象称为化学位移。对化学位移的分析、测定,是XPS分析中的一项主要内容,是判定原子化合态的重要依据。《现代材料分析技术》12Al的氧化态化学位移《现代材料分析技术》13化学位移的经验规律同一周期内主族元素结合能位移随它们的化合价升高线性增加;而过渡金属元素的化学位移随化合价的变化出现相反规律。分子M中某原子A的内层电子结合能位移量同与它相结合的原子电负性之和有一定的线性关系。XPS的化学位移同宏观热力学参数之间有一定的联系。《现代材料分析技术》14三、XPS结构X射线光电子谱仪《现代材料分析技术》X射线激发源进样系统样品室真空系统能量分析器电子倍增器显示记录系统hνee-15X射线源离子源样品台电子能量分析器电子探测及倍增器数据处理与显示真空内真空外XPS《现代材料分析技术》16《现代材料分析技术》171.X射线源X射线源是用于产生具有一定能量的X射线的装置。在目前的商品仪器中,一般以Al/Mg双阳极X射线源最为常见。《现代材料分析技术》18X射线的产生高能电子轰击阳极靶产生X射线特征X射线不是连续波,能量具有单色性,只与靶材有关;X射线不是一根线,具有一系列线;XPS需要单色的、一定能量的X射线《现代材料分析技术》19双阳极X射线管1.由灯丝、阳极靶及窗口组成2.一般采用双阳极靶;常用Mg/Al双阳极靶3.加铝窗或Be窗,阻隔电子进入分析室,也阻隔X射线辐射损伤样品。4.灯丝不面对阳极靶,避免阳极的污染。《现代材料分析技术》20要求足够高的能量(使内层电子电离)足够的强度(能产生足够的光电子通量)尽量窄的线宽(单色X射线)X射线源的要求《现代材料分析技术》21X射线源的选择X射线的单色性越高,谱仪的能量分辨率也越高,因此,一般说来,高精度XPS系统中会自带一套单色光源,比如,单色AlK源;对X射线光源的选择取决于具体分析对象,为提高读谱的准确性,经常采用两种或两种以上光源。同步辐射源是十分理想的激发源,具有良好的单色性,且可提供10eV~10keV连续可调的偏振光。《现代材料分析技术》22Mg/AlX射线源能量X射线Mg靶Al靶能量(eV)相对强度能量(eV)相对强度K11253.667.01486.667.0K21253.433.01486.333.0K’1258.21.01492.31.0K31262.19.21496.37.8K41263.15.11498.23.3K51271.00.81506.50.42K61274.20.51510.10.28K1302.02.01557.02.0《现代材料分析技术》23射线能量半峰高宽(eV)YM132.30.44ZrM151.40.77NaK1041.00.4MgK1253.60.7AlK1486.60.8SiK1739.40.8TiK145111.4CrK154152.1CuK180482.5《现代材料分析技术》各种X射线源的能量24X射线的单色化X射线均具有很宽的自然宽度,能量分辨率受到限制;必须进行单色化;X射线难以聚焦,单色化困难;一般采用Rowland圆晶体进行单色化(衍射方式)将X射线用石英晶体的(1010)面沿Bragg反射方向衍射后便可使X射线单色化。X射线的单色性越高,谱仪的能量分辨率也越高。强度为原来的1%。《现代材料分析技术》25单色化XPS谱图效果《现代材料分析技术》26通过测定光电子动能而探究光电子状态。对光电子动能的测量,主要利用静电场、静磁场及电子的飞行时间等方式。2.光电子能量分析《现代材料分析技术》X射线光子电子能量分析器电子倍增器光电子样品27电子能量分析器为XPS的核心,要求能精确测定能量磁偏转式能量分析器(对环境磁场灵敏,目前不采用)和静电型能量分析器静电型能量分析器:筒镜型分析器(同AES)同心半球型分析器(又称球形致偏分析器)《现代材料分析技术》28目前,测量几KeV以下光电子动能的主要手段是利用静电场。其中同心半球型能量分析器((CHA)同时装有入射电磁透镜和孔径选择板,可以进行超高能量分解光电子测定,高分解能角度分解测定。《现代材料分析技术》29Monochromator《现代材料分析技术》30《现代材料分析技术》半球型光电子能量分析器只有能量在选定的很窄范围内的电子可能循着一定的轨道达到出口孔,改变电势,可以扫描光电子的能量范围。313.电子探测及数据处理光电子信号微弱;10-16~10-14A光电倍增管,多通道板,位置灵敏检测器三种;光电倍增管:原理是当一个电子进入到倍增管内壁与表面材料发生碰撞会产生多个二次电子,多次碰撞就可以达到放大的目的;采用高阻抗、高二次电子发射材料,增益:109《现代材料分析技术》324.离子束溅射样品表面的清洁;样品表面层的离子刻蚀;Ar离子,氧离子,铯离子,镓离子等固定溅射和扫描溅射方式溅射的均匀性溅射过程的其他效应《现代材料分析技术》335.真空系统电子的平均自由程;(10-5torr,50m)清洁表面(10-6torr,1s,原子单层)场发射离子枪要求(10-8torr)XPS要求:10-8torr以上《现代材料分析技术》34超高真空的获得《现代材料分析技术》利用机械泵,使真空度达到10-2Torr;利用涡轮分子泵,使真空度达到10-6Torr以下;利用离子泵,达到UHV条件356.成像XPS给出的是元素分布像可给出元素化学成份像可进行显微分析8微米分辨率《现代材料分析技术》36四、XPS谱及其分析方法1.定性分析同AES定性分析一样,XPS分析也是利用已出版的XPS手册。《现代材料分析技术》37定性分析依据XPS产生的光电子的结合能仅与元素种类以及所激发的原子轨道有关。特定元素的特定轨道产生的光电子能量是固定的,依据其结合能可以标定元素;理论上可以分析除H,He以外的所有元素,并且是一次全分析。《现代材料分析技术》38定性分析方法最常用的分析方法,一般利用XPS谱仪的宽扫描程序。为了提高定性分析的灵敏度,一般应加大通能,提高信噪比通常XPS谱图的横坐标为结合能,纵坐标为光电子的计数率。在分析谱图时,首先必须考虑消除荷电位移。对于金属和半导体样品几乎不会荷电,因此不用校准。对于绝缘样品,则必须进行校准。因为,当荷电较大时,会导致结合能位置有较大的偏移,导致错误判断。《现代材料分析技术》39另外,还必须注意携上峰,卫星峰,俄歇峰等这些伴峰对元素鉴定的影响。一般来说,只要该元素存在,其所有的强峰都应存在,否则应考虑是否为其他元素的干扰峰。一般激发出来的光电子依据激发轨道的名称进行标记如C1s,Cu2p等。《现代材料分析技术》40典型XPS谱6005004003002001000BindingEnergy[eV]Counts[a.u.]Al2pAl2sC1sN1sTi2pO1sTi(CN)x/AlfilmX轴——电子束缚能或动能Y轴——光电子的强度N(E)/E《现代材料分析技术》41XPS特征背底上叠加一系列谱峰,峰的束缚能是各元素的特征,直接代表原子轨道能级构成背底的有轫致辐射引起的光电子发射及非弹性散射电子本底随束缚能增加而升高S电子是单峰,p、d、f电子产生双峰《现代材料分析技术》42XPS谱线的类型在XPS中可以观察到几种类型的谱线。其中有些是XPS中所固有的,是永远可以观察到的;有些则依赖于样品的物理、化学性质。光电子谱线:在XPS中,很多强的光电子谱线一般是对称的,并且很窄。但是,由于与价电子的耦合,纯金属的XPS谱也可能存在明显的不对称。《现代材料分析技术》43谱线峰宽:谱线的峰宽一般是谱峰的自然线宽、X射线线宽和谱仪分辨率的卷积。高结合能端弱峰的线宽一般比低结合能端的谱线宽1~4eV。绝缘体的谱线一般比导体的谱线宽0.5eV。《现代材料分析技术》44XPS中的俄歇谱线在XPS中,可以观察到KLL,LMM,MNN和NOO四个系列的Auger线。因为Auger电子的动能是固定的,而X射线光电子的结合能是固定的,因此,可以通过改变激发源(如Al/Mg双阳极X射线源)的方法,观察峰位的变化与否而识别Augar电子峰和X射线光电子峰。《现代材料分析技术》45X射线的伴峰X射线的伴峰:X射线一般不是单一的特征X射线,而是还存在一些能量略高的小伴线,所以导致XPS中,除K1,2所激发的主谱外,还有一些小的伴峰。《现代材料分析技术》46Mg阳极X射线激发的C1s主峰及伴峰《现代材料分析技术》47能量损失峰对于某些材料,光电子在离开样品表面的过程中,可能与表面的其它电子相互作用而损失一定的能量,而在XPS低动能侧出现一些伴峰,即能量损失峰。当光电子能量在100~1500eV时,非弹性散射的主要方式是激发固体中自由电子的集体振荡,产生等离子激元。《现代材料分析技术》48Al的2s谱线及相

1 / 70
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功