第二节冷冻干燥的一般过程需要冻干的物品需配制成一定浓度的液体,为了能保证干燥后有一定的形状,一般冻干产品应配制成含固体物质浓度在4%~25%之间的稀溶液,以浓度为10%~15%最佳。这种溶液中的水,大部分是以分子的形式存在于溶液中的自由水;少部分是以分子吸附在固体物质晶格间隙中或以氢键方式结合在一些极性基团上的结合水。固定于生物体和细胞中的水,大部分是可以冻结和升华的自由水,还有一部分不能冻结、很难除去的结合水。冻干就是在低温、真空环境中除却物质中的自由水和一部分的吸附于固体晶格间隙中的结合水。因此,冷冻干燥过程一般分三步进行,即预冻结、升华干燥(或称第一阶段干燥)、解析干燥(或称第二阶段干燥)。一、预冻结预冻就是将溶液中的自由水固化,赋予干后产品与干燥前相同的形态,防止抽空干燥时起泡、浓缩和溶质移动等不可逆变化发生,尽量减少由温度引起的物质可溶性减少和生命特性的变化。1、预冻的方法溶液的预冻方法有两种:冻干箱内预冻法和箱外预冻法。箱内预冻法是直接把产品放置在冻干机内的多层搁板上,由冻干机的冷冻机来进行冷冻,大量的小瓶和安瓶进行冻干时为了进箱和出箱方便,一般把小瓶或安瓶分放在若干金属盘内,再装进箱子,为了改善热传递。有些金属盘制成可抽活底式,进箱时把底抽走,让小瓶直接与冻干箱的金属板接触;对于不可抽底的盘子,要求盘底平整,以获得产品的均一性。采用旋冻法的大血浆瓶要事先冻好后加上导热用的金属架后再进箱进行冷冻。箱外预冻法有二种方法。有些小型冻干机没有进行预冻产品的装置,只能利用低温冰箱或酒精加干冰来进行预冻。另一种是专用的旋冻器,它可把大瓶的产品边旋转边冷冻成壳状结构,然后再进入冻干箱内。还有一种特殊的离心式预冻法,离心式冻干机就采用此法。利用在真空下液体迅速蒸发,吸收本身的热量而冻结。旋转的离心力防止产品的气体逸出,使产品能“平静地”冻结成一定的形状。转速一般为800转/分左右。2、预冻的过程:水溶液温度降到一定时,根据溶液共晶浓度,浓度淡溶液里开始结冰,这个温度就叫结冰点。一般来说结冰点受浓度的支配与浓度一起下降。溶液温度低于结冰点时,溶液中的一部分会结晶析出,剩下的溶液浓度将会上升,就这样结冰点下降,接着继续冷却,冰结晶随着冷却而增加,剩下的溶液浓度随之而增大。可是温度降到某一点时剩下的溶液就全部冻结,这时的冻结物里混杂着冰晶体,这时的温度就是共晶点。溶液需过冷到冰点以后,其内产生晶核以后,自由水才会开始以冰的形式结晶,同时放出结晶热使其温度上升到冰点,随着晶体的生长,溶液浓度的增加,当浓度达到共晶浓度,温度下降到共晶点以下时,溶液就会全部冻结。溶液结晶的晶粒数量和大小除了与溶液本身的性质有关以外,还与晶核生成速率和晶体生长速率有关。而晶核生成速率和晶体生长速率这两个因素又是随温度和压强的变化而变化的,因此,我们可以通过控制温度和压强来控制溶液结晶的晶粒数量和大小。一般来说,冷却速度越快,过冷温度越低,所形成的晶核数量越多,晶体来不及生长就被冻结,此时所形成的晶粒数量越多,晶粒越细;反之晶粒数量越少,晶粒越大。晶体的形状也与冻结温度有关。在0oC附近开始冻结时,冰晶呈六角对称形,在六个主轴方向向前生长,同时,还会出现若干副轴,所有冰晶连接起来,在溶液中形成一个网络结构。随着过冷度的增加,冰晶将逐渐丧失容量辨认的六角对称形式,加之成核数多,冻结速度快,可能形成一种不规则的树枝型,它们有任意数目的轴向柱状体,而不象六方晶型那样只有六条。生物体液(如血液血浆、肌肉浆液、玻璃体液等)结冰形成的结晶单元,往往与单一成分的水溶液形成的冰晶类型相似。结晶类型主要取决于冷却速度和体液浓度,例如血浆、肌肉浆液等在正常浓度下结冰时,在较高零下温度、慢冷却速度下形成六方结晶单元,快速冷却至低温时形成不规则树枝状晶体。细胞悬浮液(如红血球、白血球、精子、细菌等悬浮于蒸馏水、血浆或其他悬浮介质中),在高零下温度缓慢结冰时,悬浮液中大量的冰生长,将细胞挤在两冰柱之间的狭窄管道中,管道内的悬浮介质因水析出结冰而溶质浓缩,细胞内的水通过细胞膜渗透出细胞,又造成细胞内溶质的浓缩。与此同时,胞外冰的生长,还将迫使细胞物质体积缩小、变形。但此时细胞内不结冰。当在低温下快速结冰时,则细胞内将形成胞内冰。冰的大小、形状和分布与冷却速度、保护剂的存在与否、保护剂的性质以及细胞内水的含量有关,一般说来,冷却速度越快、温度越低,细胞内形成的冰越多。悬浮液中添加非渗透性保护剂,可以使快速结冰时细胞内形成的冰数目减少。溶液结晶的形式对冻干速率有直接的影响。冰晶升华后留下的空隙是后续冰晶升华时水蒸气的逸出通道,大而连续的六方晶体升华后形成的空隙通道大,水蒸汽逸出的阻力小,因而制品干燥速度快,反之树枝形和不连续的球状冰晶通道小或不连续,水蒸汽靠扩散或渗透才能逸出,因而干燥速度慢。因此仅从干燥速率来考虑,慢冻为好。此外,冻结的速率还与冻结设备的种类、能力和传热介质等有关。预冻会对细胞和生命产生一定的破坏作用,其机理是非常复杂的,一般认为,预冻过程中水结冰所产生的机械效应和溶质效应是引起生化药品在冻干过程中失活或变性的重要因素。机械效应是指水结冰时体积增大,致使活性物质活性部位中一些弱分子力键受到破坏,从而使活性损失;溶质效应是指水结冰以后引起溶质浓度上升以及由于各种溶质在各种温度条件下溶解度变化不一致引起pH值的变化,导致活性物质所处的环境发生变化而造成失活或变性。对这种现象可采用下列措施解决:①预冻采用速冻法,先将搁板温度降至-45OC,再放入产品急速冷冻,形成细微冰晶,使其来不及产生机械效应。②选用缓冲剂时要选用溶解度相当的缓冲配对盐。③加入产品保护剂。升华阶段时间的长短与下列因素有关:①产品的品种:共熔点温度较高的产品容易干燥,升华的时间短些;②每瓶内的装量(正常的干燥速率大约为1mm/h)、总装量、玻璃容器的形状、规格;③升华时提供的热量;④冻干机本身的性能。二、升华干燥(第一阶段干燥)升华干燥也称为第一阶段干燥。将冻结后的产品置于密封的真空容器中加热,其冰晶就会升华成水蒸汽逸出而使产品脱水干燥。干燥是从外表面开始逐步向内推移的,冰晶升华后残留下的空隙变成尔后升华水蒸汽的逸出通道。已干燥层和冻结部分的分界面称为升华界面。在生物制品干燥中,升华界面约为每小时1mm的速度向下推进。当全部冰晶除去时,第一阶段干燥就完成了,此时约除去全部水分的90%左右。产品在升华干燥时要吸收热量,一克冰全部变成水蒸汽大约需要吸收670卡左右的热量。因此升华阶段必须对产品进行加热。当冻干箱内的真空度降至10Pa(可根据制品要求而定)以下,就可以开始给制品加热,为产品升华提供能量,且冻干箱内的真空度应控制在10-30Pa之间最有利于热量的传递,利于升华的进行。第一阶段升华干燥是冷冻干燥的关键阶段,大部分的水在这一阶段被升华。若控制不好,会直接影响产品的外观质量和冻干时间。若搁板的温度过高,搁板向产品提供的热量大于水分升华所吸收的热量,则产品温度持续上升,当产品温度超过其共熔点时,则产生喷瓶或瓶底变空的现象,影响产品的外观质量。赋形剂的选择和用量对冻干生化药品的外观影响很大。由于各个产品的性质不相同、配方各不同、离子浓度各不相同,对赋形剂选择和用量要求各不一样,若控制不好,冻干后的产品外观成为不易溶解的蜂窝状或粉状,而不能成为结构疏松、易于溶解的网状结构,影响药品的外观质量。但由于产品升华时,升华面不是固定的。而是在不断的变化,并且随着升华的进行,冻结产品越来越少。因此造成对产品温度测量的困难,利用温度计来测量均会有一定的误差。可以利用气压测量法来确定升华时产品的温度,把冻干箱和冷凝器之间的阀门迅速地关闭1-2秒的时间(切不可太长)。然后又迅速打开,在关闭的瞬间观察冻干箱内的压强升高情况,计下压强升高到某一点的最高数值。从冰的不同温度的饱和蒸汽压曲线或表上可以查出相应数值,这个温度值就是升华时产品的温度。产品的温度也能通过对升华产品的电阻的测量来推断。如果测得产品的电阻大于共熔点时的电阻数值,则说明产品的温度低于共熔点的温度;如果测得的电阻接近共熔点时的电阻数值,则说明产品温度已接近或达到共熔点的温度。第一阶段干燥结束可以通过以下现象判断:a.干燥层和冻结层的交界面到达瓶底并消失。b.产品温度上升到接近产品共溶点的温度。c.冻干箱的压力和冷凝器的压力接近,且两者间压力差维持不变d.当关闭干燥室与冷凝器之间的阀门时,压强上升速率与渗漏相压器近(需要预先检查渗漏的速率)。e.当在多歧管上干燥时,容器表面上的冰或水珠消失,其温度达到环境温度。通常在此基础上还要延长30分钟到1小时的时间再转到第二步干燥,以保证没有残留的冰。三、解析干燥(第二阶段干燥)解析干燥也称第二阶段干燥。在第一阶段干燥结束后,产品内还存在10%左右的水分吸附在干燥物质的毛细管壁和极性基团上,这一部分的水是未被冻结的。当它们达到一定含量,就为微生物的生长繁殖和某些化学反应提供了条件。实验证明:即使是单分子层吸附以下的低含水量,也可以成为某些化合物的溶液,产生与水溶液相同的移动性和反应性。因此为了改善产品的贮存稳定性,延长其保存期,需要除去这些水分。这就是解析干燥的目的。由于这一部分水分是通过范德华力、氢键等弱分子力吸附在药品上的结合水,因此要除去这部分水,需要克服分子间的力,需要更多的能量。此时可以把制品温度加热到其允许的最高温度以下(产品的允许温度视产品的品种而定,一般为25℃-40℃左右。病毒性产品为25℃,细菌性产品为30℃,血清、抗菌素等可高达40℃),维持一定的时间(由制品特点而定),使残余水分含量达到预定值,整个冻干过程结束。如果制品共晶点较高,系统的真空度也能保持良好,凝结器的制冷能力充裕,则也可采用一定的升温速度,将搁板温度升高至允许的最高温度,直至冻干结束,但也需保证制品在大量升华时的温度不得超过共晶点。在解析干燥阶段由于产品内逸出水份的减少,冷凝器温度的下降又引起系统内水蒸气压力的下降,这样往往使冻干箱的总压力下降到低于10Pa,这就使冻干箱内对流的热传递几乎消失。为了改进冻干箱传热,使产品温度较快地达到最高允许温度,以缩短解析干燥阶段时间,要对冻干箱内的压强进行控制,控制的压强范围在15~30Pa之间。产品温度到达许可温度之后,为了进一步降低产品内的残余水份含量,需要恢复高真空度,同时,冷凝器由于负荷减少也达到了极限低温,这样冻干箱和冷凝器之间水蒸气压力差达到了最大值。这种状况非常有利于产品内残余水份的逸出。由于冻干药品中的残留水分对冻干生化药品的影响很大,残留水分过多,生化活性物质容易失活,大大降低了稳定性。控制冻干药品中的残留水分,关键在于第二阶段再干燥的控制。在这一阶段中,温度要选择能允许的最高温度;真空度的控制尽可能提高,有利于残留水分的逸出;持续的时间越长越好,一般过程需要4-6小时;对自动化程度较高的冻干机可采取压力升高试验对残留水分进行控制,保证冻干药品的水分含量少于3%。