指数函数习题一、选择题1.定义运算a⊗b=aa≤bbab,则函数f(x)=1⊗2x的图象大致为()2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(bx)与f(cx)的大小关系是()A.f(bx)≤f(cx)B.f(bx)≥f(cx)C.f(bx)f(cx)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是()A.(-1,+∞)B.(-∞,1)C.(-1,1)D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(ax-2x-1)的定义域是B,若A⊆B,则正数a的取值范围()A.a3B.a≥3C.a5D.a≥55.已知函数f(x)=3-ax-3,x≤7,ax-6,x7.若数列{an}满足an=f(n)(n∈N*),且{an}是递增数列,则实数a的取值范围是()A.[94,3)B.(94,3)C.(2,3)D.(1,3)6.已知a0且a≠1,f(x)=x2-ax,当x∈(-1,1)时,均有f(x)12,则实数a的取值范围是()A.(0,12]∪[2,+∞)B.[14,1)∪(1,4]C.[12,1)∪(1,2]D.(0,14)∪[4,+∞)二、填空题7.函数y=ax(a0,且a≠1)在[1,2]上的最大值比最小值大a2,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=2342xx的定义域、值域和单调区间.11.(2011·银川模拟)若函数y=a2x+2ax-1(a0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a⊗b=aa≤bbab得f(x)=1⊗2x=2xx,1x答案:A2.解析:∵f(1+x)=f(1-x),∴f(x)的对称轴为直线x=1,由此得b=2.又f(0)=3,∴c=3.∴f(x)在(-∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x0,则3x2x1,∴f(3x)f(2x).∴f(3x)≥f(2x).答案:A3.解析:由于函数y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k-1,k+1)内不单调,所以有k-10k+1,解得-1k1.答案:C4.解析:由题意得:A=(1,2),ax-2x1且a2,由A⊆B知ax-2x1在(1,2)上恒成立,即ax-2x-10在(1,2)上恒成立,令u(x)=ax-2x-1,则u′(x)=axlna-2xln20,所以函数u(x)在(1,2)上单调递增,则u(x)u(1)=a-3,即a≥3.答案:B5.解析:数列{an}满足an=f(n)(n∈N*),则函数f(n)为增函数,注意a8-6(3-a)×7-3,所以a13-a0a8-6-a-3,解得2a3.答案:C6.解析:f(x)12⇔x2-ax12⇔x2-12ax,考查函数y=ax与y=x2-12的图象,当a1时,必有a-1≥12,即1a≤2,当0a1时,必有a≥12,即12≤a1,综上,12≤a1或1a≤2.答案:C7.解析:当a1时,y=ax在[1,2]上单调递增,故a2-a=a2,得a=32.当0a1时,y=ax在[1,2]上单调递减,故a-a2=a2,得a=12.故a=12或32.答案:12或328.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图象如图所示,由图象可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].答案:[-1,1]9.解析:如图满足条件的区间[a,b],当a=-1,b=0或a=0,b=1时区间长度最小,最小值为1,当a=-1,b=1时区间长度最大,最大值为2,故其差为1.答案:110.解:要使函数有意义,则只需-x2-3x+4≥0,即x2+3x-4≤0,解得-4≤x≤1.∴函数的定义域为{x|-4≤x≤1}.令t=-x2-3x+4,则t=-x2-3x+4=-(x+32)2+254,∴当-4≤x≤1时,tmax=254,此时x=-32,tmin=0,此时x=-4或x=1.∴0≤t≤254.∴0≤-x2-3x+4≤52.∴函数y=2341()2xx的值域为[28,1].由t=-x2-3x+4=-(x+32)2+254(-4≤x≤1)可知,当-4≤x≤-32时,t是增函数,当-32≤x≤1时,t是减函数.根据复合函数的单调性知:y=2341()2xx在[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11.解:令ax=t,∴t0,则y=t2+2t-1=(t+1)2-2,其对称轴为t=-1.该二次函数在[-1,+∞)上是增函数.①若a1,∵x∈[-1,1],∴t=ax∈[1a,a],故当t=a,即x=1时,ymax=a2+2a-1=14,解得a=3(a=-5舍去).②若0a1,∵x∈[-1,1],∴t=ax∈[a,1a],故当t=1a,即x=-1时,ymax=(1a+1)2-2=14.∴a=13或-15(舍去).综上可得a=3或13.12.解:法一:(1)由已知得3a+2=18⇒3a=2⇒a=log32.(2)此时g(x)=λ·2x-4x,设0≤x1x2≤1,因为g(x)在区间[0,1]上是单调减函数,所以g(x1)-g(x2)=(2x1-2x2)(λ-2x2-2x1)0恒成立,即λ2x2+2x1恒成立.由于2x2+2x120+20=2,所以实数λ的取值范围是λ≤2.法二:(1)同法一.(2)此时g(x)=λ·2x-4x,因为g(x)在区间[0,1]上是单调减函数,所以有g′(x)=λln2·2x-ln4·4x=ln2[-2·(2x)2+λ·2x]≤0成立.设2x=u∈[1,2],上式成立等价于-2u2+λu≤0恒成立.因为u∈[1,2],只需λ≤2u恒成立,所以实数λ的取值范围是λ≤2.