1对数与对数函数测试题一、选择题。1.3log9log28的值是()A.32B.1C.23D.22.若log2)](log[loglog)](log[loglog)](log[log55153313221zyx=0,则x、y、z的大小关系是()A.z<x<yB.x<y<zC.y<z<xD.z<y<x3.已知x=2+1,则log4(x3-x-6)等于()A.23B.45C.0D.214.已知lg2=a,lg3=b,则15lg12lg等于()A.baba12B.baba12C.baba12D.baba125.已知2lg(x-2y)=lgx+lgy,则yx的值为()A.1B.4C.1或4D.4或166.函数y=)12(log21x的定义域为()A.(21,+∞)B.[1,+∞)C.(21,1]D.(-∞,1)7.已知函数y=log21(ax2+2x+1)的值域为R,则实数a的取值范围是()A.a>1B.0≤a<1C.0<a<1D.0≤a≤18.已知f(ex)=x,则f(5)等于()A.e5B.5eC.ln5D.log5e9.若1()log(01),(2)1,()afxxaaffx且且则的图像是()ABCDOxyOxyOxyOxy210.若22log()yxaxa在区间(,13)上是增函数,则a的取值范围是()A.[223,2]B.223,2C.223,2D.223,211.设集合BAxxBxxA则|},0log|{},01|{22等于()A.}1|{xxB.}0|{xxC.}1|{xxD.}11|{xxx或12.函数),1(,11lnxxxy的反函数为()A.),0(,11xeeyxxB.),0(,11xeeyxxC.)0,(,11xeeyxxD.)0,(,11xeeyxx二、填空题.13.计算:log2.56.25+lg1001+lne+3log122=.14.函数y=log4(x-1)2(x<1=的反函数为__________.15.已知m>1,试比较(lgm)0.9与(lgm)0.8的大小.16.函数y=(log41x)2-log41x2+5在2≤x≤4时的值域为______.三、解答题.17.已知y=loga(2-ax)在区间{0,1}上是x的减函数,求a的取值范围.318.已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R求实数a的取值范围.19.已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?20.设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小.421.已知函数f(x)=loga(a-ax)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称.22.在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,求△ABC面积的最大值.5对数与对数函数测试题参考答案一、选择题:ADBCBCDCBAAB二、填空题:13.213,14.y=1-2x(x∈R),15.(lgm)0.9≤(lgm)0.8,16.8425y三、解答题:17.解析:先求函数定义域:由2-ax>0,得ax<2又a是对数的底数,∴a>0且a≠1,∴x<a2由递减区间[0,1]应在定义域内可得a2>1,∴a<2又2-ax在x∈[0,1]是减函数∴y=loga(2-ax)在区间[0,1]也是减函数,由复合函数单调性可知:a>1∴1<a<218、解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.当a2-1≠0时,其充要条件是:0)1(4)1(01222aaa解得a<-1或a>35又a=-1,f(x)=0满足题意,a=1,不合题意.所以a的取值范围是:(-∞,-1]∪(35,+∞)19、解析:由f(-1)=-2,得:f(-1)=1-(lga+2)+lgb=-2,解之lga-lgb=1,∴ba=10,a=10b.又由x∈R,f(x)≥2x恒成立.知:x2+(lga+2)x+lgb≥2x,即x2+xlga+lgb≥0,对x∈R恒成立,由Δ=lg2a-4lgb≤0,整理得(1+lgb)2-4lgb≤0即(lgb-1)2≤0,只有lgb=1,不等式成立.即b=10,∴a=100.∴f(x)=x2+4x+1=(2+x)2-3当x=-2时,f(x)min=-3.620.解法一:作差法|loga(1-x)|-|loga(1+x)|=|axlg)1lg(|-|axlg)1lg(|=|lg|1a(|lg(1-x)|-|lg(1+x)|)∵0<x<1,∴0<1-x<1<1+x∴上式=-|lg|1a[(lg(1-x)+lg(1+x)]=-|lg|1a·lg(1-x2)[来源:Zxxk.Com]由0<x<1,得,lg(1-x2)<0,∴-|lg|1a·lg(1-x2)>0,∴|loga(1-x)|>|loga(1+x)|解法二:作商法|)1(log||)1(log|xxaa=|log(1-x)(1+x)|∵0<x<1,∴0<1-x<1+x,∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)x11由0<x<1,∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1,∴x11>1-x>0∴0<log(1-x)x11<log(1-x)(1-x)=1∴|loga(1-x)|>|loga(1+x)|解法三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]=loga(1-x2)·logaxx11=|lg|12a·lg(1-x2)·lgxx11∵0<x<1,∴0<1-x2<1,0<xx11<1∴lg(1-x2)<0,lgxx11<0∴loga2(1-x)>loga2(1+x),即|loga(1-x)|>|loga(1+x)|解法四:分类讨论去掉绝对值当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)∵0<1-x<1<1+x,∴0<1-x2<17∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|21.解析:(1)定义域为(-∞,1),值域为(-∞,1)(2)设1>x2>x1∵a>1,∴12xxaa,于是a-2xa<a-1xa则loga(a-a2xa)<loga(a-1xa)即f(x2)<f(x1)∴f(x)在定义域(-∞,1)上是减函数(3)证明:令y=loga(a-ax)(x<1),则a-ax=ay,x=loga(a-ay)∴f-1(x)=loga(a-ax)(x<1)故f(x)的反函数是其自身,得函数f(x)=loga(a-ax)(x<1=图象关于y=x对称.22.解析:根据已知条件,A、B、C三点坐标分别为(a,log2a),(a+1,log2(a+1)),(a+2,log2(a+2)),则△ABC的面积S=)]2(log[log2)]2(log)1([log2)]1(log[log222222aaaaaa222)]2([)1)(2(log21aaaaa)2()1(log2122aaaaaaa212log21222)211(log2122aa因为1a,所以34log21)311(log2122maxS