城市污泥资源化利用江鹏1.城市污泥概念和组成城市污泥是指城市生活污水工业废水处理过程中产生的固体废弃物,污泥是包含水、泥沙、纤维、动植物残体及各种絮体、胶体、有机质、微生物、病菌、虫卵等的复杂多相体系。中国的污水处理厂多采用二级生化处理工艺,污泥主要产自初沉、二沉及其他固液分离工序,含水率高(98%),体积庞大,有机质含量约为40~50%,总氮含量4~5%,磷(P2O5)含量1~5%,钾(K2O)含量0.5~1%[2];对于生活污水和工业废水混排的场合,污泥中还常含有激素类物质(E1、E2等)、毒性有机物(苯、氯酚等)、重金属(Cd、Cr等)以及各种无机盐[3]。研究表明:污泥污染物往往具有长期毒性和不可降解性,若无序排放,将成为危险的二次污染源,通过大气、地下水、地表水和土壤等介质进入食物链,造成严重的生态风险,影响人类健康[4]。同时,由于污泥含有大量有机物、氮、磷等营养物质,若经过适当处理,可以作为优质的“二次资源”[5]。2.我国污泥处理处置现状污泥的不良环境效应要求在其排入环境前必须进行妥善处理,以降低其环境风险,因此传统污水厂在设计时均设置了污泥处理工艺。‘十一五’期间,我国城镇污水处理厂数量年均增长8%,截至2013年三季度末统计,已建设污水处理厂3501余座,城镇污水处理量已达到300多亿m³,并且在污水处理能力及效率增长的同时,污泥的产量迅速增加,产生的污泥量(按含水率80%)达3000万t左右。而‘十二五’期间以新增污水处理量运行负荷率为75%计算,污泥(含水率80%)年产量将以246万m³/年的速度递增,初步推算全国年干污泥产量为1200万t左右,湿污泥6000万t左右。目前城镇污水处理厂的污泥总产量已达到2433万t/a,同时以年均12%.的速度增长。在地域分布上,污泥主要产于中东部地区。东部11个省(市)污泥产生量占全国污泥总量的64%,中部8省占全国总量的21%,西部12个省占全国污泥总量的15%。根据预测,2015年全国城镇污水处理厂污泥产生量将达到3560万t。一般来讲,我国污泥处置的基建投资约占污水厂总投资的30%~50%,运行费约占污水厂总运行费的20%~50%[6],而发达国家污泥处置的基建投资占污水厂总投资的50%~70%,因此从成本上分析,污泥已经成为直接影响污水厂正常运行的限制性因子[7]。传统卫生填埋和焚烧处置方法由于产生渗滤液/二嗯英/甲烷气、占地面积大以及工程建设投资高等问题已经不是污泥处置的主流技术[8,9];污泥海洋投弃威胁海洋生态系统和食物链,且未从根本上解决环境问题,上世纪末,国际上签署禁止排海公约,中国是该公约的缔约国[7]。而作为一种可再利用物质,目前资源化率不足10%,不仅没有从再利用角度弥补污水处理成本,反而造成了次生环境危害。降低污泥处理成本的有效手段之一是通过适当资源化处理使其获得附加经济效益,反补到污水处理总成本之中;而此过程的直接环境效益是避免了污泥二次污染。可以说,污泥资源化处理是未来污泥处理的主流发展方向。由于污泥资源化产品使用目的和场合不同,污泥有效利用的组分和形式也不同,因此污泥资源化处理在技术上具有多样性。据了解,在我国污水处理厂建设过程中,长期以来存在“重水轻泥”的现象。目前城镇污水处理厂基本实现了污泥的初步减量化,但并未实现污泥的稳定化处理。据统计,虽然80%污水处理厂建有污泥的浓缩脱水设施,达到了一定程度的减量化,但约有80%的污泥未经稳定化处理,导致污泥中含有的恶臭物质、病原体、持久性有机物等污染物容易从污水转移到陆地,使污染物进一步扩散,也使已经建成投运的污水处理设施的环境减排效益大打折扣。难题二:“上天”还是“入地”?污泥的最终归宿在哪儿?据悉,目前常用的污泥处置方式有填埋、焚烧、堆肥、建筑材料等。胡峻铭介绍,现在有31%的污泥采用土地填埋的方式处理;3.45%与垃圾混合填埋;还有约45%的污泥用来堆肥等土地利用领域,还有约3.45%的污泥进行焚烧处理。3.污泥资源化分类按照所获产品种类不同,可将污泥资源化技术分成:建材化技术,堆肥利用技术,能源化技术,材料化技术,污泥蛋白质利用技术。3.1.污泥建材化技术污泥建材化是污泥资源化技术的重要发展方向之一。污泥约含有机物70~80%,无机物(Al、Si、Fe、Ca)20%~30%,类似于常用建筑材料的原料成分,这为污泥建材化提供了可能和条件[13]。污泥建材化主要包括制造砖、水泥、陶粒、玻璃、生化纤维板等。3.1.1污泥制砖污泥砖在焙烧过程中病原菌可全部被杀灭,重金属(As、Cd、Cr、Cu、Pb等)被固结,实现无害化。污泥制砖的前提是其成分与传统制砖原料粘土具有相似性,研究表明:生活污泥燃烧产物和粘土的化学成分基本接近,在适当调整以及混入适量添加剂后,完全可以制备建筑用砖[14-16]。西方国家常采用污泥焚烧灰制砖[15,17-20],我国则倾向采用干化污泥制砖,充分利用污泥中有机质的发热量,降低烧砖能耗。张方梅和陈绍伟将预处理后的城市排水管污泥与粘土混合,研究了不同混合比对烧制效果的影响,制备出性能优良的建筑砖。城市污水处理厂剩余污泥进行破壁处理后,用液压板框压滤机进行脱水,可将污泥含水率由80%降至40%以下,在此基础上,通过增氧干化可将污泥含水率降至20%以下,将含水率20%的污泥按干重为30%的比例,加入到烧结砖原料的页岩、粘土和煤矸石中,不会影响砖的成型和含水率。再通过添加辅助原料烧制,烧结砖的强度质量也不会受到影响,有的强度质量还高于未掺混污泥烧结砖的强度。3.1.1.1.污泥改性深度脱水工艺流程图1污泥改性深度脱水工艺流程城市污水处理厂含水率为80%的污泥,在添加一定比例污泥改性添加剂后,进入污泥改性反应罐,污泥在反应罐中经2h的反应,微生物细胞壁破裂,经高压弹性压榨机脱水后,含水率可降至40%以下,然后再经过48-72h的增氧干化,污泥的含水率便可降至20%以下。3.1.1.2.污泥制砖工艺流程图2污泥制砖工艺流程如图2,将含水量低于20%的污泥和粘土或页岩或煤矸石分别粉碎(或混合后再粉碎),与污泥砖辅助原料进行充分的混合搅拌,再经一体化的制砖设备挤压成型制成砖坯,然后再进行自动烘干和焙烧,由于采用了新型环保旋转式节能窑炉技术,实现了机械化、自动化、数字化,提高了砖坯的合格率,还大幅节约了能源。3.1.2.污泥制陶粒陶粒作为一种人造轻质粗集料,因质轻、高强、保温等特性备受关注,是具有发展潜力的新型建材。改性污泥可以制成陶粒作为建筑材料使用,污泥陶粒最早由NakouziS.等提出[2],是以污泥为主要原料,掺加适量辅料,经过成球、焙烧而成的。陶粒作为一种轻集料,可以取代普通砂石配制轻集料混凝土,具有密度小、强度高、保温、隔热、抗震性能好的特点,近年来得到了迅速发展[3]。但污泥陶粒技术在国内外的研究起步不久,目前的应用主要集中在将污泥作为一种陶粒烧制中的有机物添加剂,使用量少,只有10%左右[4~7],工艺条件和原料配比急需优化。图3污泥陶粒生产工艺简图图4不同温度下烧结体的外观图制备的轻质陶粒产品性能可依据中华人民共和国国家标准《轻骨料试验方法》(GB2842-81)和中华人民共和国建材行业标准《超轻陶粒和陶砂》(JC487-92)来检验。3.1.2.1.脱水污泥“湿法造粒-烧结”制陶粒图5“湿法造粒-烧结”工艺技术路线图脱水污泥的SiO2含量低,烧失量大,不具有烧胀性能[8],必须添加一定量的辅料与添加剂。试验以粉煤灰和粘土补充成陶组分SiO2和Al2O3,用金属(Na2O和K2O)含量高的沸石粉作为助熔剂。3.1.2.2.脱水污泥“干化-烧结”制陶粒试验图6“干化-烧结”工艺技术路线图3.1.3.污泥制水泥污泥制水泥的理论是污泥灰分高,其化学特性与水泥生产所用的原料基本相似,干化和研磨后添加适量石灰即可制成水泥。此外,水泥窑具有燃烧炉温高和处理物料量大等特点,利用城市污泥烧制水泥同时兼具减容和减量作用。发达国家利用水泥窑处理废弃物生产生态水泥已有20余年的历史,而我国尚属起步阶段。日本将城市垃圾焚烧灰和下水道污泥一起作为原料,生产所谓“生态水泥”,这种水泥的原料中有60%为废弃物(污泥占20%-30%),烧成温度1000-1300℃,燃料用量与二氧化碳排放量,都比生产普通水泥少的多。同时,利用污泥制水泥上存在一些技术问题需要解决,如污泥中含活性阴离子氯,可造成钢筋发生小孔腐蚀,限制了污泥水泥的应用范围。图7‘生态水泥’生产工艺图8利用‘生态水泥’建筑表面3.2.污泥堆肥利用3.2.1污泥肥效城市污泥含有大量的有机质和一些植物必需养分,在消除重金属与病原菌之后,可部分替代化肥。与纯猪粪和猪厩肥相比,我国城市污泥N、P、K总养分含量平均达到48.3g/kg,TN和TP含量比纯猪粪高31%和59%,比猪厩肥高188%和204%,但K含量比纯猪粪和猪厩肥低38%和62%,施用时若补充钾肥,则可获得由于化肥的农用效果[40]。同时,经处理后的污泥是一种生物质肥料,替代化肥厚可以有效避免农业面源污染,环境效益明显。3.2.2.堆肥机理污泥堆肥就是将污泥与调理剂(锯末、秸秆、树叶、粪便、垃圾)及膨胀剂(木屑、秸秆、花生壳、玉米芯等)在一定条件下(pH、C/N、通气、水分、温度)进行堆沤,利用细菌、放线菌、真菌等微生物作用,促进可被生物降解有机物可控制地向稳定的腐殖质转化的生物学过程。污泥经堆肥化处理后,病原菌、寄生虫卵、杂草种子几乎全部被杀死,无臭味,重金属有效态含量降低,速效养分含量增加,是一种性质稳定的生物肥料。污泥堆肥除可施用于农田、园林绿化、草坪、废弃地等外,还可用作林木、花卉育苗基质,能降低育苗成本[42],有较好的经济效益、环境效益和社会效益[43]堆肥化过程有好氧堆肥和厌氧堆肥两种,目前污泥堆肥化基本上采用的是好氧堆肥。好氧堆肥过程由四个阶段组成,即升温阶段,高温阶段,降温阶段和腐熟阶段[44]。每个阶段的优势微生物和原生动物种群结构不同,利用不同阶段的堆肥产物作为食物和能量源,直至稳定腐殖质物质形成[45]。3.2.3.利用途径3.2.3.1园林绿地利用污泥堆肥用于城市园林绿地,避开了食物链,减少了运输费用,为城市园林绿地养护提供廉价有机肥[46]。3.2.3.2.农田土壤利用农田经连续耕作,植物根系对矿物质不断获取,土壤中有机质和矿质元素都很缺乏。污泥堆肥施入土壤后,能改变土壤的理化性质,增加土壤N、P、K含量,调节土壤pH值,促进团粒结构的形成,改善土壤透水性、蓄水保肥性、通气性及耕作性。3.2.3.3.矿业废弃地修复我国大部分非金属矿山废弃地中并不含过多的重金属元素和有毒物质,将污泥堆肥处理后,可作为有机肥料替代品或土壤改良剂,施用于矿山废弃地,对其进行复垦。将生活污泥与矿业生产中废弃的矿砂、矿泥按一定比例混合,重构适合速生草本植物生长的耕层土壤,加快土壤腐殖质层的产生和熟化,最终达到了农业复垦的目的,该方法的核心是控制生活污泥的掺量[60]。3.3.污泥能源化技术污泥的能源化技术主要基于污泥中存在有机成分,从元素角度分析,污泥中碳含量占到30%以上,主要存在于挥发分当中。氧含量和煤炭相比偏高,氮和硫的含量和煤炭中类似。不同来源污泥的干基发热量也有较大的差别,为10~20MJ/kg。污泥能源化利用的途径有消化、热解、气化、燃烧、共燃烧、微生物燃料电池(MFC)等。消化可将污泥中有机质转化为沼气,然后通过燃烧产生热值和发电;热解和气化可以得到燃气和焦油;干化后的污泥的热值与褐煤相当,燃烧可以实现这部分能量的转化和利用;MFC则可直接将有机污染物降解同时产电。从表1可以看出,干燥污泥中还有少量水分,挥发分的含量超过50%,灰分占到30.8%~40.3%,固定碳含量为3.8%~6.8%。和煤炭相比,污泥中的挥发分和灰分较高,固定碳含量偏低。由表2可以看出,污泥及污泥灰中的化学成分主要为SiO2、Al2O3、Fe2O3和CaO,其中Fe2O3和CaO主要是不同的沉降过程中加入的絮凝成分。由于处理工艺的不同,还会造成污泥中的磷含量出现较大差别。3