高中数学必修四1.5-人教版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2yxO11232)0,2(),1,23(),0,(),1,2(),0,0(:关键点***复习回顾***的图象]2,0[,sinxxy)(A置的最大距离运动的物体离开平衡位:振幅)(2TT次所需要的时间运动的物体往复运动一=:周期)(21内往复运动的次数运动的物体在单位时间=:频率Tff称为初相时的相位:相位0xx:)0,0)(sin(运动中的相关概念在简谐其中AxAy物理中简谐振动的相关物理量试研究与的图象关系.xysin)6sin(),3sin(xyxy23632y1-1Ox223352613xysin)3sin(xy)6sin(xy探究one:对函数图象的影响21-1xysinoxy22332635613)6sin(xyxysinxysinxysinxysinxysinxysinxysinxysin)3sin(xyxysinxysinxysinxysinxysin32一、函数y=sin(x+)图象:的变化引起图象位置发生变化(左加右减)平移变换①把y=sinx的图象向__(φ0时)或向___(φ0时)平移|φ|个单位长度得到y=sin(x+φ)的图象.左右函数y=3cos(x+)图象向左平移个单位所得图象的函数表达式为_____43把y=sin2x的图象经过怎样的变换就得到y=sin(2x+)的图象?3想一想?作函数及的图象.xy21sinxy2sinx2x2sin2223042430x21sinxx1001022230x21100102340yOx-121322523724434xy21sinxy2sinxysin探究two:对函数图象的影响函数、与的图象间的变化关系.xy21sinxysinxy2sin-12yOx241xy21sinxy2sin二、函数y=sinx(0)图象:周期变换2T决定函数的周期:②把所得图象各点的横坐标____(ω1时)或___(0ω1时)到原来的___倍(纵坐标不变),得到y=sin(ωx+φ)的图象.缩短伸长1/ω为了得到y=3sin(2x+π/5)的图象,只需将函数y=3sin(x+π/5)的图象上各点的()而得到.A.横坐标伸长到原来的2倍,纵坐标不变.B.横坐标缩短到原来的1/2倍,纵坐标不变.D.纵坐标伸长到原来的2倍,横坐标不变.C.纵坐标伸长到原来的1/2倍,横坐标不变.By=Asinx与y=sinx的图象关系:xysin21xysin22sinxsinxxxsin210223200011000220002121作下列函数图象:xO1-1y2-22322xysin2xysin21xysin探究three:A对函数图象的影响函数、与的图象间的变化关系.xysin21xysinxysin2xO1-1y2-22232xysin2xysin21振幅变换y=sinxy=Asinx所有的点纵坐标伸长(A1)或缩短(0A1)A倍横坐标不变三、函数y=Asinx(A0)图象:A的大小决定这个函数的最大(小)值上述变换称为振幅变换,据此理论,函数的图象是由函数的图象经过怎样的变换而得到的?)43sin(23xy)43sin(xy用“五点法”画出函数y=3sin(2x+π/3)的简图.解:651273126x2232032x-3ox222312-1-23y63π12653sin(2x+π/3)030-30)3/2sin(x-11000思考:如何由变换得的图象?xysin)32sin(3xy1-12-2ox3-36536335612767322y方法1:(按先平移后变周期的顺序变换))32sin(3xy)32sin(xyxysin)3sin(xyy=sinxy=sin(x+)横坐标缩短1(伸长01)到原来的1/倍y=sin(x+)纵坐标伸长A1(缩短0A1)到原来的A倍y=Asin(x+)y=sinxy=Asin(x+)总结:向左0(向右0)方法1:按先平移后变周期的顺序变换平移||个单位纵坐标不变横坐标不变1-12-2ox3-36536335612767322y方法2:(按先变周期后平移顺序变换)xy2sin)32sin(xy)32sin(3xyxysin)6(2sin)32sin(xxyy=sinx横坐标缩短1(伸长01)到原来的1/倍y=sinx纵坐标伸长A1(缩短0A1)到原来的A倍y=Asin(x+)y=sinxy=Asin(x+)总结:纵坐标不变横坐标不变方法2:按先变周期后平移顺序变换向左0(向右0)平移||/个单位)sin()(sinxxy如何由y=sinx的图象得到y=3sin(x-)的图象?214向右平移π/4个单位长度第1步:y=sinx的图象y=sin(x-)的图象4(纵坐标不变)各点的横坐标伸长到原来的2倍第2步:y=sin(x-)的图象y=sin(x-)的图象2144解法一:思考:如果先伸缩再平移,是不是把上述第1步和第2步颠倒过来就可以了呢?如果不行,那么图像应该怎么进行变换呢?第3步:y=sin(x-)的图象y=3sin(x-)的图象2144各点的纵坐标伸长到原来的3倍横坐标不变如何由y=sinx的图象得到y=3sin(x-)的图象?214向右平移π/2个单位长度(纵坐标不变)各点的横坐标伸长到原来的2倍解法二:各点的纵坐标伸长到原来的3倍横坐标不变y=sinx的图象y=sin(x)的图象21第1步:4第2步:y=sin(x)的图象21y=sin(x-)的图象21214第3步:y=3sin(x-)的图象4y=sin(x-)的图象21探究one:对函数图象的影响:平移变换探究two:对函数图象的影响:周期变换探究three:A对函数图象的影响:振幅变换课堂小结:3.函数的图象变换与正弦型函数类似,可参照上述原理进行.)cos(xyxysin1.函数的图象,可以看作是把函数图象上所有的点向___(当>0时)或向___(当<0时)平行移动____个单位长度而得到.)sin(xy左右)sin(xy2.函数的图象,可以看作是把函数的图象上所有点的横坐标____(当>1时)或_____(当0<<1时)到原来的倍(纵坐标不变)而得到的.)sin(xy1缩短伸长一、学到的知识二、思想方法yAxsin()例3.如图是函数的图象,确定A、、的值。T566()222Tyx22sin()解:显然A=2x62260x()3yx223sin()解法1:由图知当时,y=0故有所求函数解析式为yx22sin6yx226sin()yx223sin()3解法2:由图象可知将的图象向左移即得,即yx223sin()所求函数解析式为

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功