圆锥曲线常见七大题型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

圆锥曲线常见七大题型(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(X1,Y1),(X2,Y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的情况讨论),消去四个参数。(2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点构成的三角形问题,常用正、余弦定理搭桥。(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。1若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。2若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。对于1可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于2首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。最值问题的处理思路:1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x、y的范围;2、数形结合,用化曲为直的转化思想;3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;4、借助均值不等式求最值。(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。2.曲线的形状未知-----求轨迹方程(6)存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)(7)两线段垂直问题圆锥曲线两焦半径互相垂直问题,常用来处理或用向量的坐标运算来处理。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功