1《等差、等比数列》专项练习题一、选择题:1.已知等差数列{an}中,a1=1,d=1,则该数列前9项和S9等于()A.55B.45C.35D.252.已知等差数列{an}的公差为正数,且a3·a7=-12,a4+a6=-4,则S20为()A.180B.-180C.90D.-903.已知等差数列{an}中,a2+a8=8,则该数列前9项和S9等于()A.18B.27C.36D.454.等比数列{an}中,a3=7,前3项之和S3=21,则公比q的值为()A.1B.-21C.1或-1D.-1或215.在等比数列{an}中,如果a6=6,a9=9,那么a3等于()A.4B.23C.916D.26.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为()A.x2-6x+25=0B.x2+12x+25=0C.x2+6x-25=0D.x2-12x+25=07.已知等比数列na中,公比2q,且30123302aaaa,那么36930aaaa等于A.102B.202C.162D.1528.等比数列的前n项和Sn=k·3n+1,则k的值为()A.全体实数B.-1C.1D.3二、填空题:1.等差数列na的前n项和nnSn32.则此数列的公差d.2.数列{an},{bn}满足anbn=1,an=n2+3n+2,则{bn}的前10次之和为3.若na是首项为1,公差为2的等差数列,11nnnaab,则数列nb的前n项和nT=.4.在等比数列{an}中,已知a1=23,a4=12,则q=_________,an=________.5.在等比数列{an}中,an>0,且an+2=an+an+1,则该数列的公比q=______.三、解答题:1.设{an}为等差数列,Sn为{an}的前n项和,S7=7,S15=75,已知Tn为数列{Snn}的前n项数,求Tn.2.已知数列na是等差数列,其前n项和为nS,12,633Sa.(1)求数列na的通项公式;(2)求.nSSS111213.已知数列满足a1=1,an+1=2an+1(n∈N*)(1)求证数列{an+1}是等比数列;(2)求{an}的通项公式.4.在等比数列{an}中,a1+an=66,a2·an-1=128,且前n项和Sn=126,求n及公比q.2参考答案一、选择题:1.B提示:998911452s2.A提示:由等差数列性质,a4+a6=a3+a7=-4与a3·a7=-12联立,即a3,a7是方程x2+4x-12=0的两根,又公差d0,∴a7a3a7=2,a3=-6,从而得a1=-10,d=2,S20=180.3.C提示:在等差数列{an}中,a2+a8=8,∴198aa,则该数列前9项和S9=199()2aa=36CADBB二、填空题:1.答案:2提示:411Sa,102322221Saa,62a,2d.2.512提示:bn=1an=1(n+1)(n+2)=1n+1-1n+2∴S10=b1+b2+…bn=12-112=512.3.答案:69nn提示:)321121(21)32)(12(1,12nnnnbnann,用裂项求和法求得96nnTn.4.2,3·2n-2.5.251.三、解答题:1.解:设数列{an}的公差为d,则Sn=na1+12n(n-1)d.∵S7=7,S15=75,∴7a1+21d=715a1+105d=75,∴a1=-2d=1∴Snn=a1+12·(n-1)d=-2+12·(n-1)∴Sn+1n+1-Snn=12∴数列{Snn}是等差数列,其首项为-2,公差为12,∴Tn=n·(-2)+n(n-1)2·12=14n2-94n.2.解:(1)设数列na的公差为d,由题意得方程组1222336211dada,解得221da,∴数列na的通项公式为ndnaan2)1(1,即nan2.3(2)∵nan2,∴)1(2)(1nnaanSnn.∴nSSS11121)1(1321211nn.3.(1)证明由an+1=2an+1得an+1+1=2(an+1)又an+1≠0∴111nnaa=2即{an+1}为等比数列.(2)解析:由(1)知an+1=(a1+1)qn-1即an=(a1+1)qn-1-1=2·2n-1-1=2n-14.解析:∵a1an=a2an-1=128,又a1+an=66,∴a1、an是方程x2-66x+128=0的两根,解方程得x1=2,x2=64,∴a1=2,an=64或a1=64,an=2,显然q≠1.若a1=2,an=64,由qqaan11=126得2-64q=126-126q,∴q=2,由an=a1qn-1得2n-1=32,∴n=6.若a1=64,an=2,同理可求得q=21,n=6.综上所述,n的值为6,公比q=2或21.