高中物理专题复习选修3-1磁场单元过关检测考试范围:磁场临界类问题;满分:100分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、计算题1.如图所示,在真空中坐标xoy平面的0x区域内,有磁感强度TB2100.1的匀强磁场,方向与xoy平面垂直,在x轴上的)0,10(p点,有一放射源,在xoy平面内向各个方向发射速率smv/100.14的带正电的粒子,粒子的质量为kgm25106.1,电量为Cq18106.1,求带电粒子能打到y轴上的范围.()2.如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离l=16cm处,有一个点状的α放射源S,它向各个方向发射α粒子,α粒子的速度都是v=3.0×106m/s,已知α粒子的电荷与质量之比q/m=5.0×107C/kg,现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度。()ocmx/cmy/p3.如图,半径为cmr10的匀强磁场区域边界跟y轴相切于坐标原点O,磁感强度TB332.0,方向垂直纸面向里.在O处有一放射源S,可向纸面各个方向射出速度为smv/102.36的粒子.已知粒子质量kgm271064.6,电量Cq19102.3,试画出粒子通过磁场空间做圆周运动的圆心轨道,求出粒子通过磁场空间的最大偏角.()4.在边长为a2的ABC内存在垂直纸面向里的磁感强度为B的匀强磁场,有一带正电q,质量为m的粒子从距A点a3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.()5.如图所示,矩形匀强磁场区域的长为L,宽为L/2。磁感应强度为B,质量为m,电荷量为e的电子沿着矩形磁场的上方边界射入磁场,欲使该电子由下方边界穿出磁场,求:电子速率v的取值范围?()图5DABC6.如图所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。要使粒子必能从EF射出,则初速度V0应满足什么条件?并求出现EF上有粒子射出的区域?()评卷人得分一、计算题1.AB解析:解析:带电粒子在磁场中运动时有RvmBqv2,则cmmBqmvR101.0106.1100.1100.1106.1182425.如图15所示,当带电粒子打到y轴上方的A点与P连线正好为其圆轨迹的直径时,A点既为粒子能打到y轴上方的最高点.因cmROp10,cmRAP202,则cmOPAPOA31022.当带电粒子的圆轨迹正好与y轴下方相切于B点时,B点既为粒子能打到y轴下方的最低点,易得cmROB10.综上,带电粒子能打到y轴上的范围为:cmycm31010.2.ABCD解析:解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R表示轨道半径,有qvB=mv2/R,由此得R=mv/qB,代入数值得R=10cm。可见,2RlR,如图9所示,因朝不同方向发射的α粒子的圆轨迹都过S,由此可知,某一圆轨迹在图中N左侧与ab相切,则此切点P1就是α粒子能打中的左侧最远点。为定出P1点的位置,可作平行于ab的直线cd,cd到ab的距离为R,以S为圆心,R为半径,作弧交cd于Q点,过Q作ab的垂线,它与ab的交点即为P1。,再考虑N的右侧。任何α粒子在运动中离S的距离不可能超过2R,以2R为半径、S为圆心作圆,交ab于N右侧的P2点,此即右侧能打到的最远点。由图中几何关系得,所求长度为P1P2=NP1+NP2,代入数值得P1P2=20cm。点评:本题给定带电粒子在有界磁场中运动的入射速度的大小,其对应的轨迹半径也就确定了。但由于入射速度的方向发生改变,从而改变了该粒子运动轨迹图,导致粒子的出射点位置变化。在处理这类问题时重点是画出临界状态粒子运动的轨迹图(对应的临界状态的速度的方向),再利用轨迹半径与几何关系确定对应的出射范围。3.解析:设粒子在洛仑兹力作用下的轨道半径为R,由RvmBqv2得cmmmBqmvR2020.0102.3332.0102.31064.619627虽然粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此粒子作圆周运动的圆心必落在以O为圆心,半径cmR20的圆周上,如图2中虚线.由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R一定的条件下,为使粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即粒子应从磁场圆直径的A端射出.如图2,作出磁偏转角及对应轨道圆心O,据几何关系得212sinRr,得060,即粒子穿过磁场空间的最大偏转角为060.4.ABCEF解析:解析:如图6所示,设粒子速率为1v时,其圆轨迹正好与AC边相切于E点.由图知,在EAO1中,11REO,113RaAO,由AOEO11030cos得图6DABCE1v1o1R图7FABCG2oD2v2R11323RaR,解得aR)32(31,则aRaAOAE)332(23211.又由1211RvmBqv得maqBmBqRv)32(311,则要粒子能从AC间离开磁场,其速率应大于1v.如图7所示,设粒子速率为2v时,其圆轨迹正好与BC边相切于F点,与AC相交于G点.易知A点即为粒子轨迹的圆心,则aAGADR32.又由2222RvmBqv得maqBv32,则要粒子能从AC间离开磁场,其速率应小于等于2v.综上,要粒子能从AC间离开磁场,粒子速率应满足maqBvmaqB3)32(3.粒子从距A点aa3~)332(的EG间射出.5.BCDE解析:解析:(1)带电粒子射入磁场后,由于速率大小的变化,导致粒子轨迹半径的改变,如图所示。当速率最小时,粒子恰好从d点射出,由图可知其半径R1=L/4,再由R1=mv1/eB,得当速率最大时,粒子恰好从c点射出,由图可知其半径R2满足,即R2=5L/4,再由R2=mv2/eB,得电子速率v的取值范围为:。6.【解析】粒子从A点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。图9-8图9-9图9-10临界半径R0由dCosθRR00有:Cos1dR0;故粒子必能穿出EF的实际运动轨迹半径RR0即:Cos1dqBmvR0有:)Cos1(mqBdv0。由图知粒子不可能从P点下方向射出EF,即只能从P点上方某一区域射出;又由于粒子从点A进入磁场后受洛仑兹力必使其向右下方偏转,故粒子不可能从AG直线上方射出;由此可见EF中有粒子射出的区域为PG,且由图知:cotdCos1dSincotdSinRPG0。或者PG=AG=sind。