1六年级上册工程问题专项练习A一、选择题1.一项工程,甲单独做20天完成,甲乙两队合做12天完成,乙队单独做()天完成.A.5B.8C.62.一项工程,甲独做12天完成,乙独做4天完成。若甲先做若干天后,由乙接着做余下的工程,直至完成全部任务,这样前后共用了6天,甲先做了()天.A.3B.4C.53.一件工程,甲单独做需8天完成,甲乙合作需6天完成.现由甲先做3天后,余下的工作由乙单独完成,还需()天.A.15B.9C.124.甲乙两人合作打一份材料.开始甲每分钟打100个字,乙每分钟打200个字.合作到完成总量的一半时,甲速度变为原来的3倍,而乙休息了5分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000B.6000C.12000D.18000二、填空题5.某种速印机每小时可以印3600张纸,那么印240张纸需要__________分钟。6.一种产品是由一个大零件和两个小零件组成,已知师傅每小时可生产9个大零件或者14个小零件,徒弟每小时可生产3个大零件或者10个小零件.如果要生产27套这种产品,那么师、徒两人至少需要合作__________小时。7.某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放__________小时.8.一项工程,甲乙两人合作需36天完成;乙丙两人合作需要45天完成;甲丙两人合作要60天完成。那么,只要一人独做,最少需要__________天完成。9.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程,则完成这项工程共用__________天。10.某项工程需要100天完成,开始由10个人用30天完成了全部工程的,随后再增加10个人来完成这项工程,那么能提前__________天完成任务。三、解答题11.一件工作,甲独做需要6天,乙单独做需要8天,两人合做几小时,可以完成这件工作的?12.一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?13.一水池装有一个进水管和一个排水管。如果单开进水管,5小时可将空池灌满;如果单开排水管,7小时可将整池水排完。现在先打开进水管,2小时后打开排水管。请问:再过多长时间池内将恰好存有半池水?214.蓄水池有甲、乙两个进水管,单开甲管需12小时注满水,单开乙管需18小时注满水。现要求10小时注水池,那么甲、乙两管至少要合开多长时间?15.修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。两队合作,每天工作6小时,几天可以完成?16.甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在A仓库,乙在B仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在A仓库搬了多长时间?17.甲、乙合作一件工程,由于配合得好,甲的工作效率比单独做时提高,乙的工作效率比单独做时提高.甲、乙两人合作6小时,完成全部工作的,第二天乙又单独做了6小时,还留下这件工作的尚未完成,如果这件工作始终由甲一人单独来做,需要多少小时?18.有甲乙两个工程,张三单独做完甲工程需要12天,单独做完乙工程需要15天;李四单独做完甲工程需要8天,单独做完乙工程20天.张三李四二人共同完成这个工程最少需要多少天?19.单独完成一件工程,甲需要24天,乙需要32天.若甲先独做若干天后乙单独做,则共用26天完成工作.问甲做了多少天?20.一项工程,甲队单独做需30天完成,乙队单独做需40天完成。甲队单独做若干天后,由乙队接着做,共用35天完成了任务。甲、乙两队各做了多少天?321.甲、乙两人合作加工一批零件,8天可以完成。中途甲因事停工3天,因此,两人共用了10天才完成。如果由甲单独加工这批零件,需要多少天才能完成?22.有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时,甲比乙多做了20个零件。问这批零件共有多少个?23.甲、乙两人共同加工一批零件,8小时可以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?24.一段布,可以做30件上衣,也可做48条裤子。如果先做20件上衣后,还可以做多少条裤子?25.一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?26.有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天。现在让3个队合修,但中途甲队撤出去到另外工地,结果用了6天才把这条公路修完.当甲队撤出后,乙、丙两队又共同合修了多少天才完成?4解析1.答案:C;试题分析:试题分析:根据题意可知甲的工作效率是,甲乙合作的效率是,可求乙的工作效率,从而根据工作量÷工作效率=工作时间,此题可解。解:÷(-)=÷=6(天)答:乙队单独做6天完成.故选:C.2.答案:A;试题分析:试题解析:把这项工程看做单位“1”,设甲先做x天,根据等量关系式;甲做的工作量+乙做的工作量=工作总量,列方程即可解答.解:设甲先做了x天,则乙就做了(6-x)天.x+(6-x)×=1x+-x=1x=x=3则甲先做了3天.故选:A.3.答案:A;试题分析:试题分析:首先根据一件工程,甲单独做需8天完成,甲乙合作需6天完成,分别求出甲、甲乙的工作效率,进而用减法求出乙的工作效率;然后根据工作量=工作效率×工作时间,求出甲3天的工作量,进而求出剩下的工作量;最后根据工作时间=工作量÷工作效率,求出余下的工作由乙5单独完成,还需几天完成即可.解:(1-×3)÷(-)=÷=15(天)故选:A.4.答案:D;试题分析:试题分析:前一半时乙的工作量是甲的2倍,所以后一半甲应是乙的2倍,把后一半工作量分为6份,甲应为4份,乙应为2份,说明乙休息时甲打了1份,这一份的量是100×3×5=1500字,故总工作量是1500×6×2=18000字.故选:D.5.答案:4;试题分析:试题分析:化1小时=60分钟,先依据工作效率=工作总量÷工作时间,求出速印机的工作效率,再根据工作时间=工作总量÷工作效率即可解答。解:1小时=60分钟,240÷(3600÷60)=240÷60=4(分钟),答:印240张纸需要4分钟;故答案为:4.6.答案:4.5;试题分析:试题分析:师徒二人各自加工2小时,一小时加工大零件,一小时加工小零件,共计完成12个大零件,24个小零件,正好配套。也就是2小时完成12套,求完成27套,看27里面有多少个12即可。解:9+3=12,10+14=24,12×2=24,师徒二人2小时完成12套,627÷12×2=2.25×2=4.5(小时)答:师、徒两人至少需要合作4.5小时。故答案为:4.5.7.答案:4;试题分析:试题分析:因为甲水管注水快,所以甲水管要一直开满10小时,这样,在10小时里面甲能注满水池的.剩下的由乙水管注入.乙水管开的时间,就是他们共同注水的时间.解:要想同时开的时间最小,则根据工效,让甲“满负荷”地做,才可能使得同时开放的时间最小.所以,乙开放的时间为(1-×10)÷=4(小时),即甲、乙最少要同时开放4小时.故答案为:4.8.答案:60;试题分析:试题分析:根据工程问题进行解答即可。解:⇒甲+乙+丙=⇒⇒乙最大为-=⇒1÷=60(天)故答案为:60.9.答案:70;试题分析:试题分析:应先算出一个人的工作效率,进而算出12个人的工作效率,还需要的天数=剩余的工作量÷12个人的工作效率,把相关数值代入即可求得还需要的天数,再加35天即可。解:总工作量看做单位“1”.剩余工作量为1-=,一个人的工作效率为÷6÷35,7(1-)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)所以完成这项工程共用70天。故答案为:70.10.答案:10;试题分析:试题分析:根据工作效率=工作量÷工作时间进行分析求解。解:假设每人每天的工作效率为a份,全部的工作总量是10a×30÷=1500a(份);增加10分后完成的天数是:(1500a-30×10a)÷(10a+10a)=60(天),提前10-30-60=10(天)完成。故答案为:10.11.答案:2;试题分析:试题分析:用除以他们每小时的效率之和即可.解:÷(+)=×=2(小时)答:两人合做2小时,可以完成这件工作的.12.答案:28;试题分析:试题分析:将整个工程的工作量看作“1”个单位,求出甲的工作效率,然后求出甲、乙合作的工作效率,进一步求出乙的工作效率,即可求出乙独干需要的时间。解:甲每天完成总量的,甲、乙合作每天完成总量的,乙单独做每天能完成总量的-8=,所以乙单独做28天能完成;故答案为:28.13.答案:小时;试题分析:试题分析:解:2小时后水池水量有×2=,还需要(-)÷(-)=小时故答案为:小时14.答案:3;试题分析:试题分析:当甲管一直开,乙管开一段时间,此时甲注水池,则乙管注水池的1-,然后再除以乙管的工作效率即为乙管要开的时间,即为合开的时间.解:(1-×10)÷=3(小时)答:甲、乙两管至少需要合开3小时.故答案为:3.15.答案:4;试题分析:试题解析:把前两个条件综合为“甲队40小时完成”,后两个条件综合为“乙队60小时完成”.解:1÷[+]÷6=4(天)答:4天可以完成.16.答案:6小时;试题分析:9试题分析:由“搬完货物甲用10小时,乙用12小时,丙用15小时”可知,甲乙丙的工作效率分别是、、,由于每个人的工作效率不变,而第二天的工作可以认为是三人合作完成用了16小时,根据工作总量=工作效率×工作时间,可以求出第二天A、B两个仓库的工作总量为(++)×16=4,又因为两个仓库的工作量相同,因此每个仓库的工作总量都是4÷2=2,要求丙在A仓库工作的时间,只要用丙在A仓库完成的工作量除以丙的工作效率即可,而丙在A仓库完成的工作量等于A仓库的工作总量减去甲在A仓库16小时完成的工作量,即列式为(2-×16)÷,求解即可。解:由分析可得,第二天A、B两个仓库的工作总量为:(++)×16=4,因为两个仓库的工作量相同,所以A仓库的工作量是:4÷2=2,所以丙在A仓库工作的时间是:(2-×16)÷,=(2-1.6)×15,=0.4×15,=6(小时).答:丙在A仓库工作了6小时.故答案为:6小时。17.答案:33;试题分析:试题分析:解:乙的工作效率是:(1-)÷6=,甲的工作效率是:(,所以,单独由甲做需要:1÷(小时).故答案为:3318.答案:12天;试题分析:试题分析:由题目条件可知,李四擅长做甲工程,所以让李四先做甲工程,张三先做乙工程,等李四做完甲工程再和张三做乙工程,要求最少,也就是合做乙工程的时间应最少,即两人分别做的时间应为8小时,那么共需要:8+(1-)÷(+),解决问题。10解:8+(1-)÷(+)=8+÷,=8+4,=12(天);答:两人合作完成这两项工程,最少需要12天。19.答案:18天;试题分析:试题分析:设总工作量为1,则甲的工作效率为,乙的工作量为,由于共用26天时间完成了了工程,则可设甲工作了x天,则乙就工作26-x天,根据工作效率×工作时间=工作量可得方程:x+×(26-x)=1,解此方程即得甲独做了多少天.解:设总工作量为1,甲工作了x天,则乙就工作26-x天,可得方程:x+×(26-x)=1+-=1,=,x=18.答:甲做了18天.20.答案:1520;试题分析:试题分析:把这项工程看作单位“1”,设甲单独干x天,那么乙就单独干35-x天,依据工作总量=工作时间×工作效率,分别用x表示出甲和乙单独完成的工作总量,再根据两人完成工作总量和为“1”列方程即可解答.解:设甲单独干x天,x+×(35-