第二章实数综合练习题一、实数的概念及分类1、实数的分类正有理数有理数零整数、有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。表示方法:记作“a”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。表示方法:正数a的平方根记做“a”,读作“正、负根号a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。0a注意a的双重非负性:a03、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:33aa,这说明三次根号内的负号可以移到根号外面。四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,,0baba,0babababa0(3)平方法:设a、b是两负实数,则baba22。五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a必须是非负数。2、性质:(1))0()(2aaa(3))0,0(babaab()0,0(baabba))0(aa(2)aa2)0(aa(4))0,0(bababa()0,0(bababa)3、最简二次根式:运算结果若含有“a”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算(1)六种运算:加、减、乘、除、乘方、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律:运算律在无理数范围内仍然适用加法交换律abba加法结合律)()(cbacba乘法交换律baab乘法结合律)()(bcacab乘法对加法的分配律acabcba)(1.实数a、b、c在数轴上的对应点如图,求a+2abcbc+---的值。ab0c2.(1)9的平方根是()。A.-3B.3C.±3D.81(2)16算术平方根是()。A.±4B.-4C.4D.23.已知()223903xyxx-+-=+,求xy的值。4.若a+b<0,a<0,b>0,则a,-a,b,-b的大小关系为()。A.a<-b<b<-aB.-b<a<-a<bC.a<-b<-a<bD.-b<a<b<-a5.估计512-与0.5大小关系是512-0.5(填“>”“=”或“<)。6.求下列各式中的x。(1)()223160x+-=;(2)28130125x+=7.比较27+与36+的大小.8.某化工厂一种球形储气罐的体积为9850m3,试求该球体的直径.(球的体积公式为V=243Rp,p取3.14,结果保留3个有效数字)10.若a>0,ab<0,则()()2241baab----+的结果是().A.-3B.3C.2a+2b+3C.-2a+2b-511.(大连中考)若x=a-,byab=+,则xy的值为().A.2aB.2bC.a+bD.a-b12.(盐城中考)计算12--()()021232.16-+---八年级数学实数一、选择题1.要使41a+有意义,a的值为().A.0B.-2C.-1D.-42.实数a,b在数轴上的位置如图2-C-3,则有().A.abb+B.abC.ab-D.ba-3.下列叙述正确的是().A.任何实数都有互为相反数的2个平方根B.零的立方根为0C.916的平方根就是916C.无理数就是带根号的数4.已知a=231,1,32bcp==骣琪桫,则a,b,c三个数的大小关系是()A.a>b>cB.b>a>cC.a>c>bD.b>c>a5.若m是16的平方根,n=()24,则m,n的关系是().A.m=±nB.m=nC.m=-nD.mn¹6.已知a,b互为相反数,c,d互为倒数,e是非零数,则()01232abcde+--的值为().A.0B.12C.25-D.52二、填空题7.在数轴上与原点的距离是25的点所表示的实数是.8.3-的相反数是,绝对值是,倒数是.9.49的平方根是,64的算术平方根是,-64的立方根是.10.已知a=2,则代数式2a-aaaa+-的值等于.11.一个正数的平方根为x+3与2x-6,则x=,这个正数是.三、解答题12.求x的值:(1)39;x=()()22137;x+=()()23319x-=13.计算:(1)()()2233338125123;--+--+-+-(2)()333271225625;---+-(3)()2231212125;2-?+?骣琪桫(4)()323336480.120064125--+--?14.化简:(1)95;20´(2)()()722227-+;15.(3)()2453-;(4)1631127+-.15.若实数a,b互为相反数,c,d互为倒数,m的绝对值为2,求a2-b2+(cd)-1÷(1-2m+m2)的值。例1.求使aaa41313有意义的a的取值范围。例2.已知0525-22xxxy,求7(x+y)-20的立方根。例3.已知a,b均为有理数,且满足等式5-2a=2b+223a-,求a,b的值.例4.已知:x,y,z满足关系式yxyxzyxzyx20122012223,试求x,y,z的值。例5.比较下列各组数的大小。(1)323-7-与(2)8525-3与例6.已知75的小数部分是a,7-5的小数部分是b,求a+b的值。例7.已知a满足|2008-a|+2009a=a,求a-22008的值。练习题:1.如图,数轴上点P表示的数可能是()2.A.10B.7-C.10-D.72.已知0x1,那么在2,,1,xxxx中最大的是()A.xB.x1C.xD.2x3.等式1112xxx成立的条件是()A.1xB.1-xC.11xD.1x或1-x4.已知5,14,0.063ab则()A.10abB.310abC.100abD.3100ab5.使等式2()xx成立的x的值()A.是正数B.是负数C.是0D.不能确定6.已知实数a满足3154aa,则a的取值范围是________7.若xx有意义,则1x=8.实数a、b、c在数轴上对应的位置如下:则332)()(accbba=9.现在要将一个边长为m的正方形的铁板锻造成一个面积是它2倍的圆形铁板(厚度一样),则这个铁板的半径__m.10.如图所示,将两个边长为2的正方形沿对角线剪开,拼成一个大正方形,这个大正方形的边长是.11.如果3325a+2=0,则x+17的平方根是____________12.已知a是小于35的整数,且22aa,那么a的所有可能值是______13.一个正方形的面积变为原来的m倍,则边长变为原来的倍;一个立方体的体积变为原来的n倍,则棱长变为原来的倍。14.点A在数轴上和原点相距3个单位,点B在数轴上和原点相距5个单位,则A,B两点之间的距离是___15.点A在x轴上,且到y轴的距离为5,B与A点关于点(1,0)对称,,则B点坐标为16.已知x、y是有理数,且x、y满足22322332xyy,则x+y=17.在实数范围内,设2012)22214(xxxxxa,求a的个位数字是什么?18.已知:2133aab,化简:2132abb19.已知21a的算术平方根是3,31ab的平方根是±4,c是13的整数部分,求a+2b-c2的平方根。20.已知m、n是有理数,且0752325nm,求m、n的值。21.请在同一个数轴上用尺规作出2和5的对应的点。22.探究创新:(1)依次连接44方格各条边中点,得到一个正方形,如图阴影部分,求这个正方形的面积和边长。(2)利用44方格,作出面积为10的正方形,然后在数轴上表示实数10-10和23.已知实数a使aaa20122011成立,求22011a的值。24.已知20052a是整数,求所有满足条件的正整数a的和.第二章实数一、填空题:(每小题2分,共20分)1.64的平方根是_________,算术平方根是_________.9的平方根是__________,算术平方根是________.2.364=____________,327102=_____________.3.已知一个数的绝对值是10,则这个数是___________.若712x,则x=___________.4.化简2)4(3=______________.21的相反数是____________,绝对值是______________.5.已知0)5(2622zyx,则zyx94=_____________.当x_________时,xx有意义.6.估计200=__________(误差小于1);30=___________(误差小于0.1).二、选择题(每小题3分,共24分)7.在1.414,3,132,5,32中,无理数的个数是()A.1B.2C.3D.48.下列各式中正确的是()A.981B.38944944C.74343432223D.1)14.3(09.估算56的值应在()10.A.6.5~7.0之间B.7.0~7.5之间C.7.5~8.0之间D.8.0~8.5之间11.下列说法中,正确的是()A.有理数都是有限小数B.无限循环小数都是无理数C.有理数和无理数都可以用数轴上的点表示D.无理数包括正无理数,0和负无理数12.下列式子成立的是()13.A.3223B.35C.39D.42.1214.下列计算正确的是()15.A.123B.42·8C.3232D.22816.64的立方根与16的平方根之和是()17.A.0B.6C.2D.6或218.绝对值小于3的所有实数的积为()19.A.6B.12C.0D.6三、计算题:(18分)20.计算:(1)200(2)211281132(3))3523)(3523((4)2)325((5)2