实验六-数字信号处理在双音多频拨号系统中的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实验六数字信号处理在双音多频拨号系统中的应用一、实验目的1.了解双音频信号的特点2.学会双频拨号的使用3.了解并检测DTMF信号的DFT参数选择二、实验环境计算机MATLAB软件三、实验原理DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A变换器;在接收端用A/D变换dijizh器将其转换成数字信号,并进行数字信号处理与识别。为了系统的检测速度并降低成本,还开发一种特殊的DFT算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。下面先介绍电话中的DTMF信号的组成。在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用)2sin()2sin(21tftf表示,其中Hzf6791,Hzf12092。这样8个频率形成16种不同的双频信号。具体号码以及符号对应的频率如表10.6.1所示。表中最后一列在电话中暂时未用。表1双频拨号的频率分配:列行1209Hz1336Hz1477Hz1633Hz697Hz123A770Hz456B852Hz789C942Hz*0#DDTMF信号在电话中有两种作用,一个是用拨号信号去控制交换机接通被叫的用户电话机,另一个作用是控制电话机的各种动作,如播放留言、语音信箱等。2电话中的双音多频(DTMF)信号的产生与检测(1)双音多频信号的产生假设时间连续的DTMF信号用)2sin()2sin()(21tftftx表示,式中21ff和是按照表10.10.1选择的两个频率,1f代表低频带中的一个频率,2f代表高频带中的一个频率。显然采用数字方法产生DTMF信号,方便而且体积小。下面介绍采用数字方法产生DTMF信号。规定用8KHz对DTMF信号进行采样,采样后得到时域离散信号为)8000/2sin()8000/2sin()(21nfnfnx形成上面序列的方法有两种,即计算法和查表法。用计算法求正弦波的序列值容易,但实际中要实验六数字信号处理在双音多频拨号系统中的应用占用一些计算时间,影响运行速度。查表法是预先将正弦波的各序列值计算出来,寄存在存储器中,运行时只要按顺序和一定的速度取出便可。这种方法要占用一定的存储空间,但是速度快。因为采样频率是8000Hz,因此要求每125ms输出一个样本,得到的序列再送到D/A变换器和平滑滤波器,输出便是连续时间的DTMF信号。DTMF信号通过电话线路送到交换机。(2)双音多频信号的检测在接收端,要对收到的双音多频信号进行检测,检测两个正弦波的频率是多少,以判断所对应的十进制数字或者符号。显然这里仍然要用数字方法进行检测,因此要将收到的时间连续DTMF信号经过A/D变换,变成数字信号进行检测。检测的方法有两种,一种是用一组滤波器提取所关心的频率,根据有输出信号的2个滤波器判断相应的数字或符号。另一种是用DFT(FFT)对双音多频信号进行频谱分析,由信号的幅度谱,判断信号的两个频率,最后确定相应的数字或符号。当检测的音频数目较少时,用滤波器组实现更合适。FFT是DFT的快速算法,但当DFT的变换区间较小时,FFT快速算法的效果并不明显,而且还要占用很多内存,因此不如直接用DFT合适。下面介绍Goertzel算法,这种算法的实质是直接计算DFT的一种线性滤波方法。这里略去Goertzel算法的介绍(请参考文献[19]),可以直接调用MATLAB信号处理工具箱中戈泽尔算法的函数Goertzel,计算N点DFT的几个感兴趣的频点的值。表2:8个基频Hz最近的整数k值DFT的k值绝对误差二次谐波Hz对应的k值最近的整数k值绝对误差69717.861180.139139435.024350.02477019.531200.269154038.692390.30885221.833220.167170442.813430.18794124.113240.113188247.285470.285120930.981310.019241860.752610.248133634.235340.235267267.134670.134147737.848380.152295474.219740.219163341.846420.154326682.058820.058四、实验过程(实验步骤、记录、数据、分析、结果)(1)运行仿真程序exp6.m,任意送入6位电话号码,打印出相应的幅度谱。观察程序运行结果,对照表1和表2,判断程序谱分析的正确性。实验代码:6位号码%DTMF双频拨号信号的生成和检测程序%clearall;clc;tm=[1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68];%DTMF信号代表的16个数N=205;K=[18,20,22,24,31,34,38,42];f1=[697,770,852,941];%行频率向量f2=[1209,1336,1477,1633];%列频率向量TN=input('键入6位电话号码=');%输入6位数字TNr=0;%接收端电话号码初值为零forl=1:6;d=fix(TN/10^(6-l));TN=TN-d*10^(6-l);forp=1:4;实验六数字信号处理在双音多频拨号系统中的应用forq=1:4;iftm(p,q)==abs(d);break,end%检测码相符的列号qendiftm(p,q)==abs(d);break,end%检测码相符的行号pendn=0:1023;%为了发声,加长序列x=sin(2*pi*n*f1(p)/8000)+sin(2*pi*n*f2(q)/8000);%构成双频信号sound(x,8000);%发出声音pause(0.1)%接收检测端的程序X=goertzel(x(1:205),K+1);%用Goertzel算法计算八点DFT样本val=abs(X);%列出八点DFT向量subplot(3,2,l);stem(K,val,'.');grid;xlabel('k');ylabel('|X(k)|')%画出DFT(k)幅度axis([10500120])limit=80;%fors=5:8;ifval(s)limit,break,end%查找列号endforr=1:4;ifval(r)limit,break,end%查找行号endTNr=TNr+tm(r,s-4)*10^(6-l);enddisp('接收端检测到的号码为:')%显示接收到的字符disp(TNr)实验六数字信号处理在双音多频拨号系统中的应用分析:运行程序,根据提示键入6位电话号码678012,回车后可以听见6位电话号码对应的DTMF信号的声音,并输出相应的6幅频谱图如图1所示,左上角的第一个图在k=20和k=38两点出现峰值,所以对应第一位号码数字6。最后显示检测到的电话号码678012。(2)分析该仿真程序,将产生、检测和识别6位电话号码的程序改为能产生、检测和识别8位电话号码的程序,并运行一次,打印出相应的幅度谱和8位电话号码。实验代码:8位号码%DTMF双频拨号信号的生成和检测程序%clearall;clc;tm=[1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68];%DTMF信号代表的16个数N=205;K=[18,20,22,24,31,34,38,42];f1=[697,770,852,941];%行频率向量f2=[1209,1336,1477,1633];%列频率向量TN=input('键入8位电话号码=');%输入8位数字TNr=0;%接收端电话号码初值为零forl=1:8;d=fix(TN/10^(8-l));TN=TN-d*10^(8-l);实验六数字信号处理在双音多频拨号系统中的应用forp=1:4;forq=1:4;iftm(p,q)==abs(d);break,end%检测码相符的列号qendiftm(p,q)==abs(d);break,end%检测码相符的行号pendn=0:1023;%为了发声,加长序列x=sin(2*pi*n*f1(p)/8000)+sin(2*pi*n*f2(q)/8000);%构成双频信号sound(x,8000);%发出声音pause(0.1)%接收检测端的程序X=goertzel(x(1:205),K+1);%用Goertzel算法计算八点DFT样本val=abs(X);%列出八点DFT向量figure(2)subplot(4,2,l);stem(K,val,'.');grid;xlabel('k');ylabel('|X(k)|')%画出DFT(k)幅度axis([10500120])limit=80;%fors=5:8;ifval(s)limit,break,end%查找列号endforr=1:4;ifval(r)limit,break,end%查找行号endTNr=TNr+tm(r,s-4)*10^(8-l);enddisp('接收端检测到的号码为:')%显示接收到的字符disp(TNr)实验六数字信号处理在双音多频拨号系统中的应用实验六数字信号处理在双音多频拨号系统中的应用分析:运行程序,根据提示键入8位电话号码45678012,回车后可以听见8位电话号码对应的DTMF信号的声音,并输出相应的8幅频谱图如图所示,左上角的第一个图在k=20和k=31两点出现峰值,所以对应第一位号码数字4。最后显示检测到的电话号码45678012。五、思考题简述DTMF信号的参数:采样频率、DFT的变换点数以及观测时间的确定原则。答:1.观测时间的确定:观察要检测的8个频率,相邻间隔最小的是第一和第二个频率,间隔是73Hz,要求DFT最少能够分辨相隔73Hz的两个频率,即要求HzF73min。DFT的分辨率和对信号的观察时间Tp有关,Tpmin=1/F=1/73=13.7ms。考虑到可靠性,留有富裕量,要求按键的时间大于40ms。2.采样频率的确定:频谱分析的频率范围为697~3266Hz。按照采样定理,最高频率不能超过折叠频率,即HzFs36225.0,由此要求最小的采样频率应为7.24KHz。因为数字电话总系统已经规定sF=8KHz,因此对频谱分析范围的要求是一定满足的。3.DFT的变换点数的确定:DFT的频率采样点频率为Nkk/2(k=0,1,2,---,N-1),相应的模拟域采样点频率为NkFfsk/(k=0,1,2,---,N-1),希望选择一个合适的N,使用该公式算出的kf能接近要检测的频率,或者用8个频率中的任一个频率'kf代入公式'/ksfFkN中时,得到的k值最接近整数值,这样虽然用幅度最大点检测的频率有误差,但可以准确判断所对应的DTMF频率,即可以准确判断所对应的数字或符号。经过分析研究认为N=205是最好的。实验六数字信号处理在双音多频拨号系统中的应用六、实验总结1.在DTMF信号的参数设定的时候要按照一定的原则来,否则得到的输出不够准确;2.要注意频谱分析的频率范围要检测的信号频率范围是697~1633Hz,但考虑到存在语音干扰,除了检测这8个频率外,还要检测它们的二次倍频的幅度大小,波形正常且干扰小的正弦波的二次倍频是很小的,如果发现二次谐波很大,则不能确定这是DTMF信号。这样频谱分析的频率范围为697~3266Hz。按照采样定理,最高频率不能超过折叠频率,即HzFs36225.0,由此要求最小的采样频率应为7.24KHz。因为数字电话总系统已经规定sF=8KHz,因此对频谱分析范围的要求是一定满足的。按照msTp

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功