第五节-数列的综合应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第五节数列的综合应用考点一数列在实际问题与数学文化问题中的应用[典例](1)《张邱建算经》是中国古代数学史上的杰作,该书中有首古民谣记载了一数列问题:“南山一棵竹,竹尾风割断,剩下三十节,一节一个圈.头节高五寸①,头圈一尺三②.逐节多三分③,逐圈少分三④.一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是多远?”(注释:①第一节的高度为0.5尺;②第一圈的周长为1.3尺;③每节比其下面的一节多0.03尺;④每圈周长比其下面的一圈少0.013尺)问:此民谣提出的问题的答案是()A.72.705尺B.61.395尺C.61.905尺D.73.995尺(2)(2018·北京东城区模拟)为了观看2022年的冬奥会,小明打算从2018年起,每年的1月1日到银行存入a元的一年期定期储蓄,若年利率为p,且保持不变,并约定每年到期存款本息均自动转为新一年的定期.2019年1月1日小明去银行继续存款a元后,他的账户中一共有________元;到2022年的1月1日不再存钱而是将所有的存款和利息全部取出,则可取回________元.[解题技法]1.解决数列与数学文化相交汇问题的关键2.解答数列应用题需过好“四关”[题组训练]1.(2019·贵阳适应性考试)《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为()A.76钱B.56钱C.23钱D.1钱2.(2018·安徽知名示范高中联考)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a升,b升,c升,1斗为10升,则下列判断正确的是()A.a,b,c成公比为2的等比数列,且a=507B.a,b,c成公比为2的等比数列,且c=507C.a,b,c成公比为12的等比数列,且a=507D.a,b,c成公比为12的等比数列,且c=5073.(2019·江西金溪一中月考)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t倍.下列选项中,与t值最接近的是()A.11B.13C.15D.17考点二等差数列与等比数列的综合计算[典例](2018·北京高考)设{an}是等差数列,且a1=ln2,a2+a3=5ln2.(1)求{an}的通项公式;(2)求ea1+ea2+…+ean.[解题技法]等差数列与等比数列综合计算的策略(1)将已知条件转化为等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n项和公式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程.求解过程中注意合理选择有关公式,正确判断是否需要分类讨论.(2)一定条件下,等差数列与等比数列之间是可以相互转化的,即{an}为等差数列⇒{aan}(a0且a≠1)为等比数列;{an}为正项等比数列⇒{logaan}(a0且a≠1)为等差数列.[题组训练]1.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A.95B.90C.85D.802.已知数列{an}是公差为整数的等差数列,前n项和为Sn,且a1+a5+2=0,2S1,3S2,8S3成等比数列,则数列1anan+1的前10项和为________.3.(2019·武汉调研)等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=3.(1)若a3+b3=7,求{bn}的通项公式;(2)若T3=13,求Sn.考点三数列与函数、不等式的综合问题[典例]设函数f(x)=12+1x,正项数列{an}满足a1=1,an=f1an-1,n∈N*,且n≥2.(1)求数列{an}的通项公式;(2)求证:1a1a2+1a2a3+1a3a4+…+1anan+12.[解题技法]1.数列与函数综合问题的主要类型及求解策略(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.(2)已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n项和公式、求和方法等对式子化简变形.注意数列与函数的不同,数列只能看作是自变量为正整数的一类函数,在解决问题时要注意这一特殊性.2.数列与不等式综合问题的求解策略解决数列与不等式的综合问题时,若是证明题,则要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;若是含参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决.[题组训练]1.已知数列{an}的前n项和为Sn,点(n,Sn+3)(n∈N*)在函数y=3×2x的图象上,等比数列{bn}满足bn+bn+1=an(n∈N*),其前n项和为Tn,则下列结论正确的是()A.Sn=2TnB.Tn=2bn+1C.TnanD.Tnbn+12.(2019·昆明适应性检测)已知数列{an}的前n项和为Sn,且an=4n,若不等式Sn+8≥λn对任意的n∈N*都成立,则实数λ的取值范围为________.

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功