第8章矩阵位移法例题1图a所示结构(整体坐标见图b,图中圆括号内数码为结点定位向量(力和位移均按竖直,转动方向顺序排列)。求结构刚度矩阵[K]。第8章矩阵位移法jjjiiijjjiiivuvulEIlEIlEIlEIlEIlEIlEIlEIlEAlEAlEIlEIlEIlEIlEIlEIlEIlEIlEAlEAMQNMQN460260612061200000260460612061200000222323222323例题1第8章矩阵位移法(1)求各单元单刚EIil例题1(2)求总刚,对号、叠加第8章矩阵位移法例题1第8章矩阵位移法例题2图a所示结构,不考虑轴向变形,整体坐标见图b,图中圆括号内数码为结点定位向量(力和位移均按水平、竖直、转动方向顺序排列)。求等效结点荷载列阵。第8章矩阵位移法例题212ql12qlql2112ql2112qlp2l18pl18pl12p12p2l第8章矩阵位移法例题2(1)求各单元在局部坐标系中固端力向量第8章矩阵位移法例题2(2)将转换成单元①单元②第8章矩阵位移法例题2(3)利用单元定位向量,将中元素反号后叠加集成第8章矩阵位移法例题3试用矩阵位移法求单元①和单元③在局部坐标系下的杆端力列阵。设图示桁架,已知结点位移列阵第8章矩阵位移法例题3(1)提取整体坐标系下单元的杆端位移:(2)单元坐标系下单元的杆端位移与上同即第8章矩阵位移法例题3(3)求杆端力q=20KN/m26m6m26m11336046060q=20KN/m60606060606m6m6m=20KN/m例题4平面刚架如图所示,各杆截面相同。E=1×107kN/m2,A=0.24m2,I=0.0072m4,求各杆端力,并画出内力图。1231234q=20KN/m6m6m6m[解]1.对应结点及各单元编号如图所示;单元单元坐标x轴αCxCy①1→30°104×1050.12×105②2→345°0.70710.70712.8285×1050.0849×105③3→40°104×1050.12×105lEABlEIi2.列出单元参数表;3.列出单元坐标表示的单元刚度矩阵5)1(1048.012.004.000424.012.0048.0012.004.0012.004.00004004称对KlEIlEIlEIlEIlEIlEIlEIlEIlEAlEAlEIlEIlEIlEIlEIlEIlEIlEIlEAlEAe4602606120612000002604606120612000002223232222323)(K将以上参数代入公式:5)2(100.3396060.00.0142008285.20.1698060.000.33960060.00.01420060.00.01420008285.2008285.2称对K)1()3(KK4.列出整体坐标表示的单元刚度矩阵第一种方法:直接代入公式:单元(1)(3)的单元坐标和整体坐标一致,所以单元(2)的单元坐标和整体坐标不一致,必须经过以下变换5)3()1(1048.012.004.000424.012.0048.0012.004.0012.004.00004004称对KKixClixCliyBCyCliyCxCliByClixBCixCliyCliixClixCliyBCyCxCliBxClixCliYBCyCliyCxCliByClixBCyCliyCxCliByClixBCeK46221226)212(221222664622122)212(6221226)212(221226)212(22122)(对称第二种方法:利用坐标变换公式:)()()()(eeTeeTKTK)2()2()2()2(TKTKT以上代入公式:5)2(100.3396060.00.0142008285.20.1698060.000.33960060.00.01420060.00.01420008285.2008285.2称对K10000007071.07071.000007071.07071.000000010000007071.07071.000007071.07071.01000cossin00sincos10000cossin0sincos)2(aaaaaaaaT521033940042430421310424304072142131169700424300424303394004243042131407210424304213104243040721421310424304072142131.....................)(称对K得单元(2)整体坐标表示的单元刚度矩阵:返回目录第8章矩阵位移法5集成总刚度矩阵00100230041234iiijiiijjijijjjjiiijjijjkkkkkkkkkkkk①①②②①②①②③③③③6引入支座条件取出自由结点所对应的子块,即第3子块行、第3子块列,构成考虑约束条件后的总刚度矩阵。jjjjiikkk①②③第8章矩阵位移法59.4213/1.4072/0.04241.4072/1.5013/0.0424100.04240.04241.2994kNmkNmkNkNmkNmkNkNkNkNm7计算荷载向量6020/qkNm6m6060kNm60kNm06060TPkNkNm第8章矩阵位移法8建立结构刚度方程并求解结构刚度方程353309.42131.40720.042460101.40721.50130.0424600.04240.04241.2994uv由此解出537.42810um5348.28510vm5347.9951050000007.42848.28547.99500010T结点位移向量第8章矩阵位移法9计算杆端力eeeeFKT(1)单元结点位移向量50007.42848.28547.99510T①50007.42848.28547.99510T②57.42848.28547.99500010T③第8章矩阵位移法(2)计算单元坐标变换矩阵10001000011000010001TT①③0.70710.707100.70710.7071000010.70710.7071000.70710.70710001T②第8章矩阵位移法(3)单元坐标表示的刚度矩阵5)1(1048.012.004.000424.012.0048.0012.004.0012.004.00004004称对K)1()3(KK5)2(100.3396060.00.0142008285.20.1698060.000.33960060.00.01420060.00.01420008285.2008285.2称对K第8章矩阵位移法(4)计算各单元杆端力向量单元eeeeFKT单元单元29.712-3.8285.72529.7123.82817.243TF①81.715-2.3235.781-81.7152.32313.925TF②30060-6006060TF0eeeeeFKTF单元上作用的非结点荷载引起的固端内力向量0eF29.71252.309-31.168-29.71267.69177.313TF③第8章矩阵位移法10内力图81.71529.71229.712()NFkN2.32367.693.828()QFkN52.30913.92517.243()MkNm5.7255.78131.16877.313第8章矩阵位移法等效结点荷载向量非结点荷载移置到结点上移置原则:等效结点荷载作用下引起的结点位移应与原非结点荷载作用下引起的结点位移相等。移置方法:(1)将结构的各结点固定,即相当于取位移法的基本结构(2)求出各非结点荷载引起的固端内力(3)将固端内力反向作用到结点上第8章矩阵位移法试用先处理法建立图示连续梁的总刚度方程并求解例题580kN160kN30kN/m1234i=2i=1i=13m3m10m3m5m第8章矩阵位移法解法一123460-60250-250187.5-112.51结点和单元编号未知的结点位移向量123T2结点位移编号矩阵001002003000C3各单元的定位向量1001002U2002003U3003000U第8章矩阵位移法4各单元的刚度矩阵00422210022422001002K①00412120021413002003K②00413000003000K③第8章矩阵位移法5集成总刚度矩阵422201840224241212412202141413028123K6形成荷载向量123460-60250-250187.5-112.56019062.5TP第8章矩阵位移法7解刚度方程求结点位移PK12360840190412262.502811.74312.43218.49第8章矩阵位移法8求各单元杆端力0eeeeeFKTF单元上作用的非结点荷载引起的固端内力向量0eF841.746004818.4960200.96F①4218.49250200.962412.43250237.3F②4212.43187.5237.3240112.587.64F③第8章矩阵位移法解法二1234-90250-250187.5-112.5单元看成是一端铰支一端固定单元。1结点和单元编号未知的结点位移向量23T2结点位移编号矩阵000001002000C3各单元的定位向量1000001U2001002U3002000U第8章矩阵位移法lEIlEIlEIlEIlEIlEIlEAlEAlEIlEIlEIlEAlEAKe33030330300003303000022233233)(4各单元的刚度矩阵单元的刚度矩阵与解法一相同单元一端铰支一端固定0000010000031Ki①第8章矩