人教版2018年九年级数学上册圆的基本性质及位置关系课后练习题(含答案)1/62018年九年级数学上册圆的基本性质及位置关系课后练习题一、选择题:1、如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60°B.70°C.120°D.140°2、下列命题正确的是()A.长度相等的弧是等弧。B.平分弦的直径垂于弦。C.等弧对等弦D.等弦对等弧3、如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(-2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是()A.(0,0)B.(-1,1)C.(-1,0)D.(-1,-1)4、如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,P是优弧上一点,则∠APB度数为()A.30°B.45°C.60°D.75°5、如图,直线l与半径为5cm的⊙O相交于A、B两点,且与半径OC垂直,垂足为H.若AB=8cm,l要与⊙O相切,则l应沿OC所在直线向下平移()A.1cmB.2cmC.3cmD.4cm6、如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形PAOB的形状、大小随之变化,则AB的长度()A.变大B.变小C.不变D.不能确定人教版2018年九年级数学上册圆的基本性质及位置关系课后练习题(含答案)2/67、如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、M两点,若点M的坐标是(-4,-2),则点N的坐标为()A.(-1,-2)B.(1,2)C.(-1.5,-2)D.(1.5,-2)8、如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°9、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2mB.3mC.6mD.9m10、如图,在⊙O中,AB是⊙O的直径,AB=12,点C、D是的三等分点,M是AB上一动点,则CM+DM的最小值是()A.16B.12C.8D.6二、填空题:11、图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=度.12、如图,A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于人教版2018年九年级数学上册圆的基本性质及位置关系课后练习题(含答案)3/613、半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.14、如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=.15、如图,在△ABC中,AB=AC,∠B=40°,以B为圆心,BA的长为半径画弧,交BC于点D,连接AD,则∠DAC的度数是_______°.16、如图,已知⊙P半径为1,圆心P在抛物线上运动,当⊙P与轴相切时,圆心P坐标为.三、解答题:17、如图,AB是半圆的直径,0是圆心,C是半圆上一点,D是弧AC的中点,0D交弦AC于E,连接BE.若AC=8,DE=2,求BE的长度.人教版2018年九年级数学上册圆的基本性质及位置关系课后练习题(含答案)4/618、一条排水管的截面如图所示.已知排水管的半径OB=10,水面宽AB=16.求截面圆心O到水面的距离.19、如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.求证:MN是⊙O的切线.20、如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.求证:BC是⊙O切线.人教版2018年九年级数学上册圆的基本性质及位置关系课后练习题(含答案)5/621、如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.22、已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD(2)求证:DE为⊙O的切线.人教版2018年九年级数学上册圆的基本性质及位置关系课后练习题(含答案)6/6参考答案1、D2、C3、B4、C5、B6、C7、A8、.C9、C10、B11、52_12、130°.13、.14、130°15、30;16、,(0,-1)17、解:如图,连接BCD是弧AC的中点OD垂直平分ACEA=EC=设OD=OA=x,则OE=x-2,即,解得x=5AB=2OA=10答:BE的长度为.18、解:过O作OC⊥AB垂足为C,∵OC⊥AB∴BC=8cm在RT△OBC中,由勾股定理得,OC===6,答:圆心O到水面的距离6.19、证明:连接OM,∵AB=AC,∴∠B=∠C,∵OB=OM,∴∠B=∠OMB,∴∠OMB=∠C,∴OM∥AC,∵MN⊥AC,∴OM⊥MN.∵点M在⊙O上,∴MN是⊙O的切线.20、证明:如图,连接OD.设AB与⊙O交于点E.∵AD是∠BAC的平分线,∴∠BAC=2∠BAD,又∵∠EOD=2∠EAD,∴∠EOD=∠BAC,∴OD∥AC.∵∠ACB=90°,∴∠BDO=90°,即OD⊥BC,又∵OD是⊙O的半径,∴BC是⊙O切线.21、(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.22、证明:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.