1初二数学上册知识点复习梳理归纳第十一章全等三角形知识要点一、知识网络对应角相等性质对应边相等边边边SSS全等形全等三角形应用边角边SAS判定角边角ASA角角边AAS斜边、直角边HL作图角平分线性质与判定定理二、基础知识梳理(一)、基本概念1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。(2)两角和它们的夹边对应相等的两个三角形全等。(3)两角和其中一角的对边对应相等的两个三角形全等。(4)两边和它们的夹角对应相等的两个三角形全等。(5)斜边和一条直角边对应相等的两个直角三角形全等。4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全2等的条件时,总是先寻找边相等的可能性。2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。3、要善于灵活选择适当的方法判定两个三角形全等。(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)3初二数学上册第十二章轴对称知识要点一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系3、轴对称图形和轴对称的区别与联系轴对称图形轴对称区别联系图形(1)轴对称图形是指()具有特殊形状的图形,只对()图形而言;(2)对称轴()只有一条(1)轴对称是指()图形的位置关系,必须涉及()图形;(2)只有()对称轴.如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称.如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形.BCAC'B'A'ABC一个一个不一定两个两个一条知识回顾:4.轴对称与轴对称图形的性质①关于某直线对称的两个图形是全等形。②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;4③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x,y)关于x轴对称的点的坐标为_(x,-y)_____.点(x,y)关于y轴对称的点的坐标为___(-x,y)___.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)理解:已知等腰三角形的一线就可以推知另两线。2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。2、等边三角形的判定:①三个角都相等的三角形是等边三角形。②有一个角是600的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。5初二数学上册第十三章实数知识要点一、实数的分类:正整数整数零有理数负整数有限小数或无限循环小数正分数分数负分数小数1.实数正无理数无理数无限不循环小数负无理数2、数轴:规定了、和的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数。3、相反数与倒数;4、绝对值5、近似数与有效数字;6、科学记数法7、平方根与算术平方根、立方根;8、非负数的性质:若几个非负数之和为零,则这几个数都等于零。二、复习1.无理数:无限不循环小数)0()0(0)0(||aaaaaa620200002233..无理数的表示算术平方根定义如果一个非负数的平方等于,即那么这个非负数就叫做的算术平方根,记为,算术平方根为非负数平方根正数的平方根有个,它们互为相反数的平方根是负数没有平方根定义:如果一个数的平方等于,即,那么这个数就叫做的平方根,记为立方根正数的立方根是正数负数的立方根是负数的立方根是定义:如果一个数的立方等于,即,那么这个数就叫做的立方根,记为xaxaxaaaaxaaaxaxaxaa30.实数及其相关概念概念有理数和无理数统称实数分类有理数无理数或正数负数绝对值、相反数、倒数的意义同有理数实数与数轴上的点是一一对应实数的运算法则、运算规律与有理数的运算法则运算规律相同。第十四章一次函数知识要点一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。(3)用寄次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。7(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。)注意:列表时自变量由小到大,相差一样,有时需对称。2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。(2)性质:当k0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。1.一次函数与一元一次方程:从“数”的角度看x为何值时函数y=ax+b的值为0.2.求ax+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y=ax+b与x轴交点的横坐标3.一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0).从“数”的角度看,x为何值时函数y=ax+b的值大于0.4.解不等式ax+b>0(a,b是常数,a≠0).从“形”的角度看,求直线y=ax+b在x轴上方的部分(射线)所对应的的横坐标的取值范围.十、一次函数与正比例函数的图象与性质一次函数概念如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数.图像一条直线性质k>0时,y随x的增大(或减小)而增大(或减小);k<0时,y随x的增大(或减小)而减小(或增大).8直线y=kx+b(k≠0)的位置与k、b符号之间的关系.(1)k0,b>0图像经过一、二、三象限;(2)k0,b<0图像经过一、三、四象限;(3)k0,b=0图像经过一、三象限;(4)k<0,b>0图像经过一、二、四象限;(5)k<0,b<0图像经过二、三、四象限;(6)k<0,b=0图像经过二、四象限。一次函数表达式的确定求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.5.一次函数与二元一次方程组:解方程组从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值解方程组从“形”的角度看,确定两直线交点的坐标.cbacbayxyx222111cbacbayxyx2221119初二数学上册第十五章整式乘除与因式分解知识要点一.回顾知识点1、主要知识回顾:幂的运算性质:am·an=am+n(m、n为正整数)同底数幂相乘,底数不变,指数相加.nma=amn(m、n为正整数)幂的乘方,底数不变,指数相乘.nnnbaab(n为正整数)积的乘方等于各因式乘方的积.nmaa=am-n(a≠0,m、n都是正整数,且m>n)同底数幂相除,底数不变,指数相减.零指数幂的概念:a0=1(a≠0)任何一个不等于零的数的零指数幂都等于l.负指数幂的概念:a-p=pa1(a≠0,p是正整数)任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.也可表示为:ppnmmn(m≠0,n≠0,p为正整数)单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平