初中数学反比例函数知识点及经典例题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

反比例函数一、基础知识1.定义:一般地,形如xky(k为常数,ok)的函数称为反比例函数。xky还可以写成kxy12.反比例函数解析式的特征:⑴等号左边是函数y,等号右边是一个分式。分子是不为零的常数k(也叫做比例系数k),分母中含有自变量x,且指数为1.⑵比例系数0k⑶自变量x的取值为一切非零实数。⑷函数y的取值是一切非零实数。3.反比例函数的图像⑴图像的画法:描点法①列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序)③连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,xky(k为常数,0k)中自变量0x,函数值0y,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。⑶反比例函数的图像是是轴对称图形(对称轴是xy或xy)。⑷反比例函数xky(0k)中比例系数k的几何意义是:过双曲线xky(0k)上任意引x轴y轴的垂线,所得矩形面积为k。4.反比例函数性质如下表:k的取值图像所在象限函数的增减性ok一、三象限在每个象限内,y值随x的增大而减小ok二、四象限在每个象限内,y值随x的增大而增大5.反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k)6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky中的两个变量必成反比例关系。7.反比例函数的应用二、例题【例1】如果函数222kkkxy的图像是双曲线,且在第二,四象限内,那么的值是多少?【解析】有函数图像为双曲线则此函数为反比例函数xky,(0k)即kxy1(0k)又在第二,四象限内,则0k可以求出的值【答案】由反比例函数的定义,得:01222kkk解得0211kkk或1k1k时函数222kkkxy为xy1【例2】在反比例函数xy1的图像上有三点1x,1y,2x,2y,3x,3y。若3210xxx则下列各式正确的是()A.213yyyB.123yyyC.321yyyD.231yyy【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。解法一:由题意得111xy,221xy,331xy3210xxx,213yyy所以选A解法二:用图像法,在直角坐标系中作出xy1的图像描出三个点,满足3210xxx观察图像直接得到213yyy选A解法三:用特殊值法213321321321,1,1,211,1,2,0yyyyyyxxxxxx令【例3】如果一次函数的图像与反比例函数xmnymnmxy30相交于点(221,),那么该直线与双曲线的另一个交点为()【解析】12132212213nmmnnmxxmnynmxy解得,,相交于与双曲线直线221111121,122211yxyxxyxyxyxy得解方程组双曲线为直线为11,另一个点为【例4】如图,在AOBRt中,点A是直线mxy与双曲线xmy在第一象限的交点,且2AOBS,则m的值是_____.图解:因为直线mxy与双曲线xmy过点A,设A点的坐标为AAyx,.则有AAAAxmymxy,.所以AAyxm.又点A在第一象限,所以AAAAyyABxxOB,.所以myxABOBSAAAOB212121.而已知2AOBS.所以4m.

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功