相似三角形的判定--巩固练习(基础--带答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

相似三角形的判定--知识讲解(基础)【学习目标】1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:【典型例题】类型一、相似三角形1.下列能够相似的一组三角形为().A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】下列图形中,必是相似形的是().A.都有一个角是40°的两个等腰三角形B.都有一个角为50°的两个等腰梯形C.都有一个角是30°的两个菱形D.邻边之比为2:3的两个平行四边形【答案】C类型二、相似三角形的判定2.如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.2变式3【思路点拨】充分利用平行寻找等角,以确定相似三角形的个数.【答案与解析】∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;当△CDF∽△AED时,相似比.举一反三:【变式】如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.答∵AD、CE是△ABC的高,∴∠AEF=∠CDF=90°,又∵∠AFE=∠CFE,∴△AEF∽△CDF.∴AFEFCFFD,即AF·FD=CF·FE.3.梯形ABCD中,AB∥CD,AB=2CD,E、F分别为AB、BC的中点,EF与BD交于M.(1)求证:△EDM∽△FBM;(2)若DB=9,求MB的长.【答案与解析】(1)证明:为AB中点,,.又,四边形BCDE是平行四边形,,△EDM∽△FBM.(2)解:由(1)知,.又,.【总结升华】本题可以考虑利用平行证明两个三角形相似,关键在于分解图形中的基本结构,在梯形中包含了“8”字形.再根据相似的结论,可以得出含有第(2)问中线段的比例式.4.已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.【思路点拨】从求证可以判断是运用相似,再根据BP2=PE·PF,可以判定所给的线段不能组成相似三角形,这就需要考虑线段的等量转移了.【答案与解析】连接,,,是的中垂线,,,,.,.又,∽,,.【总结升华】根据求证确定相似三角形,是解决此类题型的捷径.举一反三:【变式】如图,F是△ABC的AC边上一点,D为CB延长线一点,且AF=BD,连接DF,交AB于E.求证:DEACEFBC.【答案】过点F作FG∥BC,交AB于G.则△DBE∽△FGE△AGF∽△ABC∵DEDBEFGF,又∵AF=BD,∴.DEAFEFGF∵△AGF∽△ABC∴AFACGFBC,即DEACEFBC.相似三角形的判定--巩固练习(基础)【巩固练习】一、选择题1.下列判断中正确的是().A.全等三角形不一定是相似三角形B.不全等的三角形一定不是相似三角形C.不相似的三角形一定不全等D.相似三角形一定不是全等三角形2.已知△ABC的三边长分别为、、2,△A′B′C′的两边长分别是1和,如果△ABC与△A′B′C′相似,那么△A′B′C′的第三边长应该是().A.B.C.D.3.如图,在大小为4×4的正方形网格中,是相似三角形的是().①②③④A.①和②B.②和③C.①和③D.②和④4.在△ABC和△DEF中,①∠A=35°,∠B=100°,∠D=35°,∠F=45°;②AB=3cm,BC=5cm,∠B=50°,DE=6cm,DF=10cm,∠D=50°;其中能使△ABC与以D、E、F为顶点的三角形相似的条件().A.只有①B.只有②C.①和②分别都是D.①和②都不是5.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有().A.ΔADE∽ΔAEFB.ΔECF∽ΔAEFC.ΔADE∽ΔECFD.ΔAEF∽ΔABF6.如图所示在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为().A.B.8C.10D.16二、填空题7.如图所示,D、E两点分别在AB、AC上,且DE和BC不平行,请你填上一个你认为合适的条件_______使△ADE∽△ACB.78910118如图所示,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=________.9.如图所示,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).10.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=__________.11.如图,CD∥AB,AC、BD相交于点O,点E、F分别在AC、BD上,且EF∥AB,则图中与△OEF相似的三角形为_________.12.如图,点E是平行四边形ABCD的边BC延长线上一点,连接AE交CD于点F,则图中相似三角形共有________对.三.解答题13.如图,在△ABC中,DE∥BC,AD=3,AE=2,BD=4,求的值及AC、EC的长度.12131414.如图在梯形ABCD中,AD∥BC,∠A=90°,且,求证:BD⊥CD.15.已知在Rt△ABC中,∠C=90°,AB=10,BC=6.在Rt△EDF中,∠F=90°,DF=3,EF=4,则△ABC和△EDF相似吗?为什么?【答案与解析】一.选择题1.【答案】C.2.【答案】A.【解析】根据三边对应成比例,可以确定13==226第三边,所以第三边是3.【答案】C.【解析】设方格边长为1,求出每个三角形的各边长,运用三边对应成比例的两个三角形相似的判定方法来确定相似三角形.4.【答案】C.5.【答案】C.【解析】∵∠AEF=90°,∴∠1+∠2=90°,又∵∠D=∠C=90°,∴∠3+∠2=90°,即∠1=∠3,∴△ADE∽△ECF.6.【答案】C.【解析】∵EF∥AB,∴,∵,∴,,∴CD=10,故选C.二.填空题7.【答案】∠ADE=∠C或∠AED=∠B或.【解析】据判定三角形相似的方法来找条件.8.【答案】3.【解析】∵∠C=∠E,∠CAB=∠EAD,∴△ACB∽△AED,∴,BC=4,在Rt△ABC中,.9.【答案】;.10.【答案】4.【解析】∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,又∵AC⊥CE,∴∠BCA+∠DCE=90°,∴∠BCA=∠E,∴△ABC∽△CDE.∵C是线段BD的中点,ED=1,BD=4∴BC=CD=2∴ABCDCDDE,即AB=4.11.【答案】△OAB,△OCD.12.【答案】3.【解析】∵平行四边形ABCD,∴AD∥BE.AB∥CD∴△EFC∽△EAB;△EFC∽△AFD;△AFD∽△EAB.三综合题13.【解析】∵DE∥BC,∴△ADE∽△ABC,∵,,∴,∴AC=,∴EC=AC-AE=.14.【解析】∵AD∥BC,∴∠ADB=∠DBC,又∵,∴△ABD∽△DCB,∴∠A=∠BDC,∵∠A=90°,∴∠BDC=90°,∴BD⊥CD.15.【解析】已知△ABC和△EDF都是直角三角形,且已知两边长,所以可利用勾股定理分别求出第三边AC和DE,再看三边是否对应成比例.在Rt△ABC中,AB=10,BC=6,∠C=90°.由勾股定理得.在Rt△DEF中,DF=3,EF=4,∠F=90°.由勾股定理,得.在△ABC和△EDF中,,,,∴,∴△ABC∽△EDF(三边对应成比例,两三角形相似).

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功