数学史在数学教育中的作用可以概括为以下几方面:数学史对理解数学发展的作用;数学史对学生掌握数学思想的作用;数学史对开发学生数学思维的作用;数学史在课堂教学中的作用。数学史教育应遵循以下四原则:科学性、实用性、趣味性、广泛性。随着新课程在全国的推进,数学史教育受到广大的中小学数学教师的重视。数学史是反映数学文化的历史,数学史教育体现数学的文化价值。当前正在我国推进的基础教育改革十分重视这一点,采取了一系列措施,加强数学史和数学文化的教育。新课标要求培养学生正确的数学观和数学价值观,特别要了解数学文化价值。学生只有了解数学的价值,才能自觉学习数学。数学史能帮助学生了解数学的文化价值,这对学生今后的发展是终身受用的。那么从数学史的视角来看,数学史教育应该渗透哪些文化价值呢?中国科学院我国著名数学史专家李文林在作数学史与数学教育的录音谈话中说到:我们应从五个角度去挖掘数学史的文化价值,首先,数学为人类提供精密思维的模式;其次,数学是其他科学的工具和语言;其三,数学是推动生产发展、影响人类物质生活方式的杠杆;其四,数学是人类思想革命的有力武器;最后,数学是促进艺术发展的文化激素。另外他还谈到一个信息:重视数学史与数学文化在数学教学中的作用,实际上可以说是一种国际现象。若干年前,美国数学协会(MAA)下属的数学教育委员会曾发出题为《呼唤变革:关于数学教师的数学修养》的建议书,其中呼吁所有未来的中小学教师注意培养自身对各种文化在数学思想的成长与发展过程中所作的贡献有一定的鉴赏能力;对来自各种不同文化的个人在古代、近代和当代数学论题的发展上所作的贡献有所研究,并对中小学数学中主要概念的历史发展有所认识。从以上材料我们可以看出,数学史教育中渗透文化价值成了数学史教育的一项重任,数学史与数学文化的结合应该是必要的,而且几乎是必然的。对于今后的中小学数学史教学,我们应该将数学文化尽可能地结合数学课程的内容,选择介绍一些对数学发展起重大作用的历史事件和人物,反映数学在人类社会进步、人类文明发展中的作用,同时也反映社会发展对数学发展的促进作用。使学生通过数学文化的学习,了解人类社会发展与数学发展的相互作用,认识数学发生、发展的必然规律;了解人类从数学的角度认识客观世界的过程;发展求知、求实、勇于探索的情感和态度;体会数学的系统性、严密性、应用的广泛性,了解数学真理的相对性;提高学习数学的兴趣。浅析数学史的教育价值看到新教材丰富多彩的数学内容,认为这是中学数学教育的一大盛事,也是当前学生的一大幸事,尤其系列3中《数学史选讲》专题的开设更值得我们教师去重视,去思考,去运用。《数学史选讲》的内容包括九讲:“1、早期的算术与几何;2、古希腊数学;3、中国古代数学瑰宝;4、平面解析几何的产生;5、微积分的产生;6、近代数学两巨星——欧拉与高斯;7、千古谜题——伽罗瓦的解答;8、对无限的深入思考——康托的集合论;9、中国现代数学的发展”。它以其深刻浑厚的内容、生动流畅的描述和扣人心弦的数学家故事呈现出数学发展历程的坎坷与艰辛,成功与愉悦。这无疑是既弥补了中学数学课程上的空白,也增进了学生对数学的理解。数学史在数学教育中的价值一直就是国际数学教育研究的一个热点问题。例如,在1997年专门成立的一个国际组织——数学史与数学教学关系国际研究小组,简称HPM。它隶属于国际数学教育委员会,专门推动数学史在教育上的应用工作,1998年4月,由国际数学教育委员会(ICMZ)发起,HPM主办的“数学史在数学教育中的作用”国际研讨会在法国召开,会议内容是探讨数学史和数学教育的关系。现行的《普通高中数学课程标准》中也提到:“教材可以在适当的地方介绍一些有关数学家的故事、数学趣闻与数学史料,使学生了解数学知识的产生与发展首先源于人类生活的需要,激发学生学习数学的兴趣”。这些都反映了数学史在教育教学工作的运用中具有重要意义。有鉴于此,以下将从数学史的弥补价值、素养价值、激励价值和教学价值等方面做出总结分析,希望能促进我们重视数学史,运用数学史。一、《数学史选讲》弥补了中学课程上的空白,丰富了中学数学教育的内容。纵观几十年来的中学数学教材,涉及数学史的内容很少,也比较零碎,真正能够成为专题并安排到学生的课程上来的,就只有新课程开设的《数学史选讲》。在过去很长的时期里,我们的中学数学教育已基本上形成了重知识的双基教学和能力培养,轻知识的素养教育和情感熏陶;重形式体系和逻辑推理,轻人文意义和算理算法的惯性,这也就造成了不少学生能求解千奇百怪的数学难题(仅仅是“习题”,而不是“问题”),而不了解最基本的道理,能记住种种解题的模式,却忘掉了数学的本和源,读完中小学的12年后,留给他们的数学仅仅是加减乘除,开方乘方而已。当问到陈省身是谁?有的学生反而问:“他是不是一个大款?还是一个歌星?黑客?”而有些学生对希腊的几何大师——欧几里得、数学之神——阿基米德;德国的数学王子——高斯,数学巨星——希尔伯特;身残志坚的瑞士数学英雄——欧拉,甚至连我国古代的著名数学家祖冲之、刘徽等都不知道,这不能不说是我们中学数学教育的一大缺陷。新课程开设的《数学史选讲》专题,它将弥补了数学课程上的空白,为学生构建一个了解数学的产生和发展历程的平台,也给学生提供了了解若干重要数学事件、数学人物和数学成果的机会。二、数学史知识具有提高学生数学素养的价值。正如哲学家培根所说的“读史使人明智”,学生学习一些数学史知识,可以较好地了解数学的发展轨迹,更好地体会数学概念所反映的思想方法,感受数学家们刻苦钻研,勇于开拓和锲而不舍的精神,这对开阔视野、启发思维以及学习和掌握数学知识大有益处。第一,能够提高学生对数学问题的解决技能,数学史提供了解决类似问题的多种途径,不同算法和多种策略,促进学生形成思考多种解题方法并给予合理评价的能力;第二,能让学生奠定深刻理解数学问题的基础和意识,数学史知识能使教学主题容易被学生接受,也能指明特定思想和程序产生的由来,为深刻地理解数学概念做好了铺垫;第三,有助于学生认识和建立丰富多样的数学联系,包括不同数学知识之间的联系,数学及其应用之间的联系,数学与其他学科之间的联系,而这些联系承载着不同的时代,超越了不同的文化,也跨越了不同的领域;第四,能够让学生明确数学与社会的相互作用,数学与社会的作用是互动的,一方面,不同文化的规范和实践影响了数学,社会实践是数学发展的动力,生活实践是数学的真正源泉,另一方面,数学也影响了人们思考问题和改造世界的方式。总而言之,数学史在提高学生数学素养上有它独特的魅力。它有助于学生培养严谨、朴实的科学态度和勤奋、自强的工作态度,逐步形成理智、自律的人格特征和宽容、谦恭的人文精神。三、中国数学史能够激发学生为祖国现代数学的振兴而读书的学习热情。中国是一个具有五千年悠久历史的文明古国,涌现了刘徽、祖冲之、赵爽、秦九韶、杨辉等一批数学名家,创造了许许多多灿烂辉煌的数学成就。例如,较为著名的数学著作《周髀算经》、《九章算术》和《算经十书》;数学历史名题“韩信点兵问题”、“鸡免同笼问题”和“百钱买百鸡问题”。从考古中发现,在殷代遗留下来的甲骨文字中,自然数的记法已毫无例外地用着十进位值制,说明了我国最早创用了十进位值制。我们的祖先还最早发现了负数,首创了代数学,在16世纪之前,除了阿拉伯某些数学著作外,代数学的发展都是由中国推动的。四、数学史料在课堂教学的合理运用,能够激发学生的学习兴趣,有助于学生树立勇攀科学高峰的信心。课堂是教师发挥教学主导作用的主阵地,也是学生获得大量知识的主要空间。在数学教学过程中,合理地运用数学史知识,可以丰富教学内容,增加教学的生动性,趣味性和思想性;提高学生掌握知识的深刻性,积极性和应用性,培养学生开拓创新,追求真理的高尚品质。因此,作为数学知识的传播者,教师不仅要教会学生解题和应用,还要懂得古为今用,取精用弘,灵活地把数学史的文化内涵,文化价值应用于课堂教学。例如,在教学正四棱台的体积公式时,我们可以从这个公式在距今四千年前就被古埃及人所掌握,到现今仍旧巍然耸立的古埃及金字塔,从公元前约1850年的一册古埃及数学课本所记录的正四棱台体积问题的成功证明,到我国数学名著《九章算术》也给出的正四棱台的体积公式V=[(2b+d)a+(2d+b)c]做一下简单的介绍。这样将能改变数学课堂的枯燥和单调,使教学的内容丰满、多姿。又如,在学习复数知识时,我们可以简单地描述:最初遇到这种数的人是法国的舒开;第一个认真讨论这种数的是文艺复兴时期意大利有名的“怪杰”,三次方程解法的获得者之一的卡丹;差不多过了100年,笛卡儿又给这种“虚幻之数”取了一个名字叫“虚数”,与“实数”形成相对;又过了约140年,大数学家欧拉用i来表示它的单位;德国数学家高斯首先提出复数这个名词,而挪威的测量学家末塞尔找到了复数的几何表示法;从18世纪起,以欧拉为首的一些数学家就开始发展了一门新的数学分支叫复数函数论,大家都学过函数,但在中学里,函数自变量的取值范围仅限于实数,如果把函数自变量z和取值范围扩大到复数,那么这种函数就叫做复变函数,即复变函数w=f(z),其中z,w都是复数。19世纪以后,由于柯西、黎曼、魏尔斯特拉斯等数学家的巨大贡献,复数取得了飞跃的发展,并且广泛应用到空气动力学、流体力学、理论物理学等方面。把这种“虚幻之数”第一次应用到工程部门并取得重大成就的是俄国的“航空之父”——儒可夫斯基。他研究了围绕和流过障碍物的不断运动着的气流分子,成功地解决了空气动力学的主要问题,创立了以空气动力学为基础的机翼升降原理,并找到了计算飞机翼型的方法,儒可夫斯基翼型是依赖于有名的儒可夫斯基变换,这是一个广分式线性的复变函数w=(z+),其中z为自变量,w为函数,a是一个常数。这一切的成就,都是依赖于那个前人感到不可捉摸的“虚幻之数”,以及由它延伸出来的复变函数论。[7]当学习椭圆知识时则可以把数学史料融入其中设计出如下问题,引导学生带着疑问和乐趣走进数学课堂。问题1古希腊有一个音乐厅,它的甲等座位并不在靠近乐队和演唱的地方,而是在一个特定的地点,这个特定的地点就是椭圆的一个焦点,而发声处则是另一个焦点,因此,甲等座位收听到的声音最大的效果也是最好的,这是为什么?问题2据说,当年西西里岛的统治者曾经设计了一座岩洞监狱,被关在里面的犯人每次密谋越狱和暴动,所有的计划均被看守者知晓,囚徒之间互相猜疑、指责,却始终也找不到告密者,这座监狱是一个名叫刁尼秀斯的官员设计的,它的形状就像一个耳朵,所以称为“刁尼秀斯之耳”,这只耳朵也的确具备了听声的功能,囚徒们议论的轻微的声音都会被山洞口的看守者听到,这些奥秘在哪儿呢?这两个问题既可以让学生初步接触椭圆知识及其聚焦效应功能,也可以调动学生的学习积极性。除了以上介绍的几个例子,中学数学的内容都有与其相关的一些数学史料,例如,回归直线方程与高斯的“最小二乘法”;正多面体与欧拉公式;赌徒梅累与概率论的产生;解析几何与笛卡儿的坐标系等等,如果教师能把数学史与课堂教学巧妙地结合,那就能给数学的教学带来新的活力,改变以算为主,以练为辅的传统数学课堂形式,既增加了学生对数学的认识和对数学发展历程的了解,也激发了学生的学习兴趣,激励学生为探索大自然的奥秘而不懈努力的斗志。数学史源远流长,内容丰富多彩,它将逐渐受到人们的重视,新课程开设了数学史,也将使它的教育价值更加突出。重视数学史,灵活运用数学史于数学教育,这将是我们中学数学教师的一项重要的工作内容摘要:“以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以知得失。”而以史为镜,可以明事理。因此,数学史的教育价值也就不言而喻了。数学史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生学习数学的兴趣,培养探索精神,揭示数学在文化史和科学进步史上的地位与影响进而揭示其人文价值,都有重要意义。