9.19.1.112eT0iT=30x=(0)(0)einn=9.10x=Φsu()2211()22sMuxMuex=−Φ(9.1)()()inxuxnuiss=(9.2)1030einnn==einn=sninenenxΦpΦx(0)0(0)0Φ=′Φ=wΦ9.19.1u9.2,isn1222(1)iissennMu−Φ=−(9.3)e()exp(()/)eesnxnexT=Φ(9.4)esissnnn==,ienn220(eidenndxεΦ=−)9.512220eexp()(1)sesendedxTεε−⎡⎤ΦΦ=−−Φ⎢⎥⎣⎦(9.6)104212ssMuε=9.6su,suddxΦ(9.6)x12000e()exp()(1)sesenddddedxdxdxdxdxdxTεεΦΦ−⎡⎤ΦΦΦΦΦ=−−⎢⎥⎣⎦∫∫9.7dx,Φ12201()exp()2(1)22seesesndeeTTdxTsεεεε⎡⎤ΦΦΦ=−+−⎢⎥⎣⎦−(9.8)0x=,0Φ=0ddxΦ=9.8()xΦ9.8φ9.8222211024eseeTεΦΦ−≥(9.9)9.92SeTε≥sε12()esBTuuM≥=(9.10)su9.1212BpMue=Φ9.119.10pΦ1052epTeΦ=9.129.10exp()0.61spenneTn=−Φ≈0B9.13bn9.1.3isnuΓ=9.1414weeTeseneυΦΓ=9.1512(8)eeTmυπ=wΦ12121()(8)4weeTesseTnnTmeMπΦ=9.16wΦ12()2ewTMnemπΦ=−A9.17wΦeT12()2.2Mnmπ≈A84.72seTε=5.2iTeε=6.2()xΦ()wsΦ=Φs106eT~eeTesnneΦ→09.612220s(1)sendedxεε−ΦΦ=−−9.189.1812220s()sendedxεε−ΦΦ=−−9.19ddxΦ9.190x0x=0Φ=0ddxEΦ=−=11202012()2()()2JdedxMε−Φ=2−Φ9.200ssJenu=9.20ddxφ31042032()()()2Je14xMε−−Φ=9.21xs=0Vφ=−9.213120200242()9VeJMsε=(9.22)9.22Childs0sBJenu=(9.23)s9.239.2230422(3DeeeVsTλ=)9.24122De0(/)esTenλε=Child100~107isλiissnunu=9.25snsu2iiiieuEEMuλµπ=≈9.26iµiµiλiλiλ9.269.2512(2)ssiinuneEMλπ=9.279.27120(2)ssienudEdxeEMελπ=9.289.28223312032(2)ssienuEeMελπ⎡⎤=⎢⎣⎦x⎥9.29(0)0E≈9.2925331203352(2)ssienuxeMελπ⎡⎤Φ=−⎢⎣⎦⎥9.30(0)0Φ=0ssJenu=0()sVΦ=−1232320005222533ieVJMsλεπ⎛⎞⎛⎞⎛⎞=⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠9.319.31Child0J0V15isλ∝108piωωpeωωeTeV0dEendxε=()xst≤()stxs=0E=[0(,)()enExtxstε=−]0()dEItAtε∂=∂A()ddsItenAdt=−()()drfItIt=0()cosrfItItω=0()sinstsstω=−00IsenAω=s200()2ssensVtEdxε==−∫109222000011()(2sincos2)222senVtsssststωωε=−+−−siBIenuA=Bu00IssenAω==200()(1sin)2senVtst2ωε=−−isnnconst==0sendEdxε=(0)0E=0senExε=Eddxφ=−110202senxεΦ=−(0)0Φ=xs=0VΦ=−10022(sVsenε=)1220(DeesTenλε=)1022e(DeeVsTλ=)1piω−0Vs31202i0242()9VeJMsε=9.480idsJenudt⎛⎞=+⎜⎝⎠B⎟9.499.489.4922200002222199Bcsusudssudtsss⎛⎞=−=−⎜⎝⎠2⎟9.50120000(2)sVenε=1200(2/)ueVM=()120029cssuu=BsChild9.50cs111130pi2s(t)st+13ω⎛⎞=⎜⎝⎠⎟9.51()12200pineMωε=9.51css=Child()()3410292cpiteVω−≈eTctt∆112