第1页(共29页)2018年江西省南昌市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,B={x|x=2n+1,n∈Z},则A∩B=()A.(﹣∞,4]B.{1,3}C.{1,3,5}D.[1,3]2.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限B.第二象限C.第三象限D.第四象限3.已知角α的终边经过点P(sin47°,cos47°),则sin(α﹣13°)=()A.B.C.D.4.已知奇函数f'(x)是函数f(x)(x∈R)是导函数,若x>0时f'(x)>0,则()A.f(0)>f(log32)>f(﹣log23)B.f(log32)>f(0)>f(﹣log23)C.f(﹣log23)>f(log32)>f(0)D.f(﹣log23)>f(0)>f(log32)5.设不等式组表示的平面区域为M,若直线y=kx经过区域M内的点,则实数k的取值范围为()A.B.C.D.6.平面内直角三角形两直角边长分别为a,b,则斜边长为,直角顶点到斜边的距离为,空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为S1,S2,S3,类比推理可得底面积为,则三棱锥顶点到底面的距离为()第2页(共29页)A.B.C.D.7.已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中网格是单位正方形,那么组合体的侧视图的面积为()A.6+B.C.D.88.执行如图程序框图,则输出的n等于()A.1B.2C.3D.49.函数f(x)=(﹣π≤x≤π)的图象大致为()A.B.C.第3页(共29页)D.10.已知具有线性相关的五个样本点A1(0,0),A2(2,2),A3(3,2),A4(4,2),A5(6,4),用最小二乘法得到回归直线方程l1:y=bx+a,过点A1,A2的直线方程l2:y=mx+n,那么下列4个命题中,①m>b,a>n;②直线l1过点A3;③④.(参考公式,)正确命题的个数有()A.1个B.2个C.3个D.4个11.设函数,若f(x)的最大值不超过1,则实数a的取值范围为()A.B.C.D.12.已知椭圆,O为坐标原点,A,B是椭圆上两点,OA,OB的斜率存在并分别记为kOA、kOB,且,则的最小值为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.展开式中的常数项为.14.平面向量,,若有,则实数第4页(共29页)m=.15.在圆x2+y2=4上任取一点,则该点到直线x+y﹣2=0的距离d∈[0,1]的概率为.16.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若,则v=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12.00分)已知等比数列{an}的前n项和为Sn,满足S4=2a4﹣1,S3=2a3﹣1.(1)求{an}的通项公式;(2)记bn=log2(an•an+1),数列{bn}的前n项和为Tn,求证:.18.(12.00分)某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;甲班乙班总计第5页(共29页)大于等于80分的人数小于80分的人数总计(2)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自[80,90)发言的人数为随机变量X,求X的分布列和期望.附:K2=,P(K2≥k0)0.100.050.025k02.7063.8415.02419.(12.00分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,ABCD为直角梯形,AD∥BC,AD⊥AB,AB=BC=AP=AD=3,AC∩BD=O,过O点作平面α平行于平面PAB,平面α与棱BC,AD,PD,PC分别相交于点E,F,G,H.(1)求GH的长度;(2)求二面角B﹣FH﹣E的余弦值.20.(12.00分)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F的直线交C于A(x1,y1),B(x2,y2)两点,y1y2=﹣4.(1)求抛物线方程;(2)点B在准线l上的投影为E,D是C上一点,且AD⊥EF,求△ABD面积的最小值及此时直线AD的方程.第6页(共29页)21.(12.00分)已知函数f(x)=ln(ax)+bx在点(1,f(1))处的切线是y=0.(1)求函数f(x)的极值;(2)当恒成立时,求实数m的取值范围(e为自然对数的底数).22.(10.00分)在平面直角坐标系xOy中,曲线C的参数方程为(θ为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.(1)求C的极坐标方程;(2)若直线l1,l2的极坐标方程分别为,,设直线l1,l2与曲线C的交点为O,M,N,求△OMN的面积.23.已知f(x)=|2x+3a2|.(1)当a=0时,求不等式f(x)+|x﹣2|≥3的解集;(2)对于任意实数x,不等式|2x+1|﹣f(x)<2a成立,求实数a的取值范围.第7页(共29页)2018年江西省南昌市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,B={x|x=2n+1,n∈Z},则A∩B=()A.(﹣∞,4]B.{1,3}C.{1,3,5}D.[1,3]【分析】先解出集合A={0,1,2,3,4},然后可判断1,3∈B,进行交集的运算即可求出A∩B.【解答】解:A={0,1,2,3,4};对于集合B:n=0时,x=1;n=1时,x=3;即1,3∈B;∴A∩B={1,3}.故选:B.【点评】考查描述法、列举法表示集合的概念,以及交集的运算.2.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接由欧拉公式eix=cosx+isinx,可得=cos=,则答案可求.【解答】解:由欧拉公式eix=cosx+isinx,可得=cos=,∴表示的复数位于复平面中的第一象限.第8页(共29页)故选:A.【点评】本题考查复数的代数表示法及其几何意义,考查数学转化思想方法,是基础题.3.已知角α的终边经过点P(sin47°,cos47°),则sin(α﹣13°)=()A.B.C.D.【分析】根据三角函数的定义求出sinα和cosα,结合两角和差的正弦公式和余弦公式进行化简即可.【解答】解:∵r=|OP|==1,∴sinα==cos47°,cosα==sin47°,则sin(α﹣13°)=sinαcos13°﹣cosαsin13°=cos47°cos13°﹣sin47°sin13°=cos(47°+13°)=cos60°=,故选:A.【点评】本题主要考查三角函数的化简和求解,利用三角函数的定义结合两角和差的正弦公式是解决本题的关键.4.已知奇函数f'(x)是函数f(x)(x∈R)是导函数,若x>0时f'(x)>0,则()A.f(0)>f(log32)>f(﹣log23)B.f(log32)>f(0)>f(﹣log23)C.f(﹣log23)>f(log32)>f(0)D.f(﹣log23)>f(0)>f(log32)【分析】判断f(x)的单调性和奇偶性,再判断大小关系.【解答】解:∵f′(x)是奇函数,且x>0时f'(x)>0,∴当x<0时,f′(x)<0,∴f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,∵﹣f′(﹣x)=f′(x),∴f(﹣x)=f(x),∴f(x)是偶函数.∵log23>log32>0,第9页(共29页)∴f(﹣log23)=f(log23)>f(log32)>f(0).故选:C.【点评】本题考查了函数单调性与奇偶性的判断与应用,属于中档题.5.设不等式组表示的平面区域为M,若直线y=kx经过区域M内的点,则实数k的取值范围为()A.B.C.D.【分析】画出不等式组对应的可行域,由于函数y=kx的图象是过点O(0,0),斜率为k的直线l,故由图即可得出其范围.【解答】解:由不等式组,作出可行域如图,如图.因为函数y=kx的图象是过点O(0,0),且斜率为k的直线l,由图知,当直线l过点A(1,2)时,k取最大值:2,当直线l过点B(2,1)时,k取最小值:,故实数k的取值范围是[,2].故选:C.第10页(共29页)【点评】本题考查简单线性规划,利用线性规划的知识用图象法求出斜率的最大值与最小值.这是一道灵活的线性规划问题,还考查了数形结合的思想,属中档题.6.平面内直角三角形两直角边长分别为a,b,则斜边长为,直角顶点到斜边的距离为,空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为S1,S2,S3,类比推理可得底面积为,则三棱锥顶点到底面的距离为()A.B.C.D.【分析】三棱锥P﹣ABC,PA,PB,PC两两垂直,P在底面的射影为H,设PA=a,PB=b,PC=c,运用三棱锥的体积公式和等积法,计算可得所求距离.【解答】解:如图三棱锥P﹣ABC,PA,PB,PC两两垂直,P在底面的射影为H,设PA=a,PB=b,PC=c,可得S1=ab,S2=bc,S3=ca,可得abc=2,由题意可得底面积为,由等积法可得×abc=PH•,第11页(共29页)可得PH==,故选:C.【点评】本题考查类比推理的应用,注意平面与空间的区别和联系,考查等积法的运用,属于中档题.7.已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中网格是单位正方形,那么组合体的侧视图的面积为()A.6+B.C.D.8【分析】几何体为圆台和三棱锥的组合体,根据三视图的对应关系计算侧视图面积.【解答】解:由正视图和俯视图可知几何体为下部为圆台,上部为三棱锥,其中圆台的上下底面半径分别为1,2,高为2,三棱锥的高为2,底面为等腰三角形,由俯视图可知底面等腰三角形底边的高为,故侧视图下部分为上下底分别为2,4,高为2的梯形,上部分为底边为,高为第12页(共29页)2的三角形,∴侧视图的面积为×(2+4)×2+=.故选:B.【点评】本题考查了简单组合体的结构特征与三视图,属于中档题.8.执行如图程序框图,则输出的n等于()A.1B.2C.3D.4【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得n=0,x=,a=﹣sin,不满足条件a=,执行循环体,n=1,x=π,a=sinπ=0,不满足条件a=,执行循环体,n=2,x=,a=sin=,不满足条件a=,执行循环体,n=3,x=,a=sin=,满足条件a=,退出循环,输出n的值为3.故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.函数f(x)=(﹣π≤x≤π)的图象大致