1《概率论与数理统计》复习资料一、复习提纲注:以下是考试的参考内容,不作为实际考试范围,仅作为复习参考之用。考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。5、理解随机变量的概念,了解(0—1)分布、二项分布、泊松分布的分布律。6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。7、掌握指数分布(参数)、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。9、会求分布中的待定参数。10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性。11、掌握连续型随机变量的条件概率密度的概念及计算。12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。13、了解求二维随机变量函数的分布的一般方法。14、会熟练地求随机变量及其函数的数学期望和方差。会熟练地默写出几种重要随机变量的数学期望及方差。15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。会用独立正态随机变量线性组合性质解题。17、了解大数定理结论,会用中心极限定理解题。18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握2分布(及性质)、t分布、F分布及其分位点概念。19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。20、掌握极大似然估计法,无偏性与有效性的判断方法。21、会求单正态总体均值与方差的置信区间。会求双正态总体均值与方差的置信区间。二、各章知识要点第一章随机事件与概率1.事件的关系ABABAABBABA2.运算规则(1)BAABABBA(2))()()()(BCACABCBACBA(3)))(()()()()(CBCACABBCACCBA(4)BAABBABA3.概率)(AP满足的三条公理及性质:(1)1)(0AP(2)1)(P2(3)对互不相容的事件nAAA,,,21,有nkknkkAPAP11)()((n可以取)(4)0)(P(5))(1)(APAP(6))()()(ABPAPBAP,若BA,则)()()(APBPABP,)()(BPAP(7))()()()(ABPBPAPBAP(8))()()()()()()()(ABCPBCPACPABPCPBPAPCBAP4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(BP,则)()()|(BPABPBAP(2)乘法公式:)|()()(BAPBPABP若nBBB,,21为完备事件组,0)(iBP,则有(3)全概率公式:niiiBAPBPAP1)|()()((4)Bayes公式:niiikkkBAPBPBAPBPABP1)|()()|()()|(7.事件的独立性:BA,独立)()()(BPAPABP(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,iipxXP)(满足(1)0ip,(2)iip=1(3)对任意RD,DxiiipDXP:)(2.连续随机变量:具有概率密度函数)(xf,满足(1)1)(,0)(-dxxfxf;(2)badxxfbXaP)()(;(3)对任意Ra,0)(aXP3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(pBpXP)1(,pqXP1)0(ppq3二项式分布),(pnBnkqpCkXPknkkn,2,1,0,)(,npnpqPoisson分布)(P,2,1,0,!)(kkekXPk均匀分布),(baUbxaabxf,1)(,2ba12)(2ab指数分布)(E0,)(xexfx121正态分布),(2N222)(21)(xexf24.分布函数)()(xXPxF,具有以下性质(1)1)(,0)(FF;(2)单调非降;(3)右连续;(4))()()(aFbFbXaP,特别)(1)(aFaXP;(5)对离散随机变量,xxiiipxF:)(;(6)对连续随机变量,xdttfxF)()(为连续函数,且在)(xf连续点上,)()('xfxF5.正态分布的概率计算以)(x记标准正态分布)1,0(N的分布函数,则有(1)5.0)0(;(2))(1)(xx;(3)若),(~2NX,则)()(xxF;(4)以u记标准正态分布)1,0(N的上侧分位数,则)(1)(uuXP6.随机变量的函数)(XgY(1)离散时,求Y的值,将相同的概率相加;(2)X连续,)(xg在X的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11ygygfyfXY,若不单调,先求分布函数,再求导。第四章随机变量的数字特征1.期望(1)离散时iiipxXE)(,iiipxgXgE)())((;(2)连续时dxxxfXE)()(,dxxfxgXgE)()())((;(3)二维时jiijjipyxgYXgE,),()),((,dydxyxfyxgYXgE),(),()),((4(4)CCE)(;(5))()(XCECXE;(6))()()(YEXEYXE;(7)YX,独立时,)()()(YEXEXYE2.方差(1)方差222)()())(()(EXXEXEXEXD,标准差)()(XDX;(2))()(,0)(XDCXDCD;(3))()(2XDCCXD;(4)YX,独立时,)()()(YDXDYXD3.协方差(1))()()())]())(([(),(YEXEXYEYEYXEXEYXCov;(2)),(),(),,(),(YXabCovbYaXCovXYCovYXCov;(3)),(),(),(2121YXCovYXCovYXXCov;(4)0),(YXCov时,称YX,不相关,独立不相关,反之不成立,但正态时等价;(5)),(2)()()(YXCovYDXDYXD4.相关系数)()(),(YXYXCovXY;有1||XY,1)(,,1||baXYPbaXY5.k阶原点矩)(kkXE,k阶中心矩kkXEXE))((第五章大数定律与中心极限定理1.Chebyshev不等式2)(}|)({|XDXEXP或2)(1}|)({|XDXEXP2.大数定律3.中心极限定理(1)设随机变量nXXX,,,21独立同分布2)(,)(iiXDXE,则),(~21nnNXnii近似,或),(~121nNXnnii近似或)0,1(~1NnnXnii近似,5(2)设m是n次独立重复试验中A发生的次数,pAP)(,则对任意x,有)(}{limxxnpqnpmPn或理解为若),(~pnBX,则),(~npqnpNX近似第六章样本及抽样分布1.总体、样本(1)简单随机样本:即独立同分布于总体的分布(注意样本分布的求法);(2)样本数字特征:样本均值niiXnX11()(XE,nXD2)();样本方差niiXXnS122)(11(22)(SE)样本标准差niiXXnS12)(11样本k阶原点矩nikikXn11,样本k阶中心矩nikikXXn1)(12.统计量:样本的函数且不包含任何未知数3.三个常用分布(注意它们的密度函数形状及分位点定义)(1)2分布)(~2222212nXXXn,其中nXXX,,,21独立同分布于标准正态分布)1,0(N,若)(~),(~2212nYnX且独立,则)(~212nnYX;(2)t分布)(~/ntnYXt,其中)(~),1,0(~2nYNX且独立;(3)F分布),(~//2121nnFnYnXF,其中)(~),(~2212nYnX且独立,有下面的性质),(1),(),,(~11221112nnFnnFnnFF4.正态总体的抽样分布(1))/,(~2nNX;(2))(~)(11222nXnii;(3))1(~)1(222nSn且与X独立;(4))1(~/ntnSXt;(5))2(~)()(21212121nntnnnnSYXt,2)1()1(212222112nnSnSnS6(6))1,1(~//2122222121nnFSSF第七章参数估计1.矩估计:(1)根据参数个数求总体的矩;(2)令总体的矩等于样本的矩;(3)解方程求出矩估计2.极大似然估计:(1)写出极大似然函数;(2)求对数极大似然函数(3)求导数或偏导数;(4)令导数或偏导数为0,解出极大似然估计(如无解回到(1)直接求最大值,一般为min}{ix或max}{ix)3.估计量的评选原则(1)无偏性:若)ˆ(E,则为无偏;(2)有效性:两个无偏估计中方差小的有效;4.参数的区间估计(正态)参数条件估计函数置信区间2已知nxu/][2nux2未知nsxt/])1([2nsntx2未知222)1(sn])1()1(,)1()1([2212222nsnnsn三、概率论部分必须要掌握的内容以及题型1.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。如对于事件A,B,A或B,已知P(A),P(B),P(AB),P(AB),P(A|B),P(B|A)以及换为A或B之中的几个,求另外几个。例:事件A与B相互独立,且P(A)=0.5,P(B)=0.6,求:P(AB),P(A-B),P(AB)例:若P(A)=0.4,P(B)=0.7,P(AB)=0.3,求:P(A-B),P(AB),)|(BAP,)|(BAP,)|(BAP课本上P19,例5;P26,第14,24题。2.准确地选择和运用全概率公式与贝叶斯公式。若已知导致事件A发生(或者是能与事件A同时发生)的几个互斥的事件Bi,i=1,2,…,n,…的概率P(Bi),以及Bi发生的条件下事件A发生的条件概率P(A|Bi),求事件A发生的概率P(A)以及A发生的条件下事件Bi发生的条件概率P(Bi|A)。例:玻璃杯成箱出售,每箱20只。假设各箱含0、1、2只残次品的概率相应为0.8、0.1和0.1,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回。试求:(1)顾客买下该箱的概率;(2)在顾客买下的该箱中,没有残次品的概率。课本上P26,第24题3.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用。分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差。(1)已知一维离散型随机变量X的分布律P(X=xi)=pi,i=1,2,…,n