2009年福建省高考数学试卷(理科)答案与解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12009年福建省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•福建)函数f(x)=sinxcosx的最小值是()A.﹣1B.﹣C.D.1【考点】三角函数的最值.菁优网版权所有【专题】计算题.【分析】利用倍角公式可把已知转化为f(x)=sin2x的形式,结合三角函数中正弦函数最小值取得的条件,求解该函数的最小值【解答】解:∵f(x)=sinxcosx=sin2x.∴当x=kπ﹣,k∈Z时,f(x)min=﹣.答案B【点评】本题主要考查二倍角的正弦公式在三角化简中的运用,利用该公式,把已知化简成y=Asin(wx+∅)的形式,进一步考查函数的相关性质.2.(5分)(2009•福建)已知全集U=R,集合A={x|x2﹣2x>0},则∁UA等于()A.{x|0≤x≤2}B.{x|0<x<2}C.{x|x<0或x>2}D.{x|x≤0或x≥2}【考点】补集及其运算.菁优网版权所有【专题】计算题.【分析】求出集合A中不等式的解集,然后求出集合A在R上的补集即可.【解答】解:∵x2﹣2x>0,∴x(x﹣2)>0,∴x>2或x<0,∴A={x|x>2或x<0},∁UA={x|0≤x≤2}.故选A【点评】本题考查学生理解补集的定义,会进行补集的运算,是一道基础题.3.(5分)(2009•福建)等差数列{an}的前n项和为Sn,且S3=6,a3=4,则公差d等于()A.1B.C.2D.3【考点】等差数列的前n项和.菁优网版权所有【专题】计算题.【分析】用等差数列的通项公式和前n项和公式,结合已知条件列出关于a1,d的方程组,解方程即可.【解答】解:设{an}的公差为d,首项为a1,由题意得2,解得,故选C.【点评】本题考查了等差数列的通项公式、前n项和公式,熟练应用公式是解题的关键.4.(5分)(2009•福建)(1+cosx)dx等于()A.πB.2C.π﹣2D.π+2【考点】定积分.菁优网版权所有【专题】计算题.【分析】由于F(x)=x+sinx为f(x)=1+cosx的一个原函数即F′(x)=f(x),根据∫abf(x)dx=F(x)|ab公式即可求出值.【解答】解:∵(x+sinx)′=1+cosx,∴(1+cosx)dx=(x+sinx)=+sin﹣=π+2.故选D【点评】此题考查学生掌握函数的求导法则,会求函数的定积分运算,是一道中档题.5.(5分)(2009•福建)下列函数f(x)中,满足“对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)的是()A.f(x)=B.f(x)=(x﹣1)2C.f(x)=exD.f(x)=ln(x+1)【考点】函数单调性的判断与证明.菁优网版权所有【专题】综合题.【分析】根据题意和函数单调性的定义,判断出函数在(0,+∞)上是减函数,再根据反比例函数、二次函数、指数函数和数函数的单调性进行判断.【解答】解:∵对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2),∴函数在(0,+∞)上是减函数;A、由反比例函数的性质知,此函数函数在(0,+∞)上是减函数,故A正确;B、由于f(x)=(x﹣1)2,由二次函数的性质知,在(0,1)上是减函数,在(1,+∞)上是增函数,故B不对;C、由于e>1,则由指数函数的单调性知,在(0,+∞)上是增函数,故C不对;D、根据对数的整数大于零得,函数的定义域为(﹣1,+∞),由于e>1,则由对数函数的单调性知,在(0,+∞)上是增函数,故D不对;故选A.【点评】本题考查了函数单调性的定义,以及基本初等函数的单调性,即反比例函数、二次函数、指数函数和数函数的单调性的应用.36.(5分)(2009•福建)阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.2B.4C.8D.16【考点】循环结构.菁优网版权所有【专题】阅读型;图表型.【分析】根据程序框图可知,程序运行时,列出数值S与n对应变化情况,从而求出当S=2时,输出的n即可.【解答】解:.由框图可知,程序运行时,数值S与n对应变化如下表:S﹣12n248故S=2时,输出n=8.故选C【点评】本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.7.(5分)(2009•福建)设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A.m∥β且l∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2【考点】必要条件、充分条件与充要条件的判断;平面与平面之间的位置关系.菁优网版权所有【分析】本题考查的知识点是充要条件的判断,我们根据面面平行的判断及性质定理,对四个答案进行逐一的分析,即可得到答案.【解答】解:若m∥l1,n∥l2,m.n⊂α,l1.l2⊂β,l1,l2相交,则可得α∥β.即B答案是α∥β的充分条件,若α∥β则m∥l1,n∥l2不一定成立,即B答案是α∥β的不必要条件,故m∥l1,n∥l2是α∥β的一个充分不必要条件,故选B4【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.8.(5分)(2009•福建)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35B.0.25C.0.20D.0.15【考点】模拟方法估计概率.菁优网版权所有【专题】计算题.【分析】由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有可以通过列举得到共5组随机数,根据概率公式,得到结果.【解答】解:由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393.共5组随机数,∴所求概率为==0.25.故选B.【点评】本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.9.(5分)(2009•福建)设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,则|•|的值一定等于()A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积【考点】平面向量数量积的运算.菁优网版权所有【专题】计算题;压轴题.5【分析】利用向量的数量积公式表示出,有已知得到的夹角与夹角的关系,利用三角函数的诱导公式和已知条件表示成的模及夹角形式,利用平行四边形的面积公式得到选项.【解答】解:假设与的夹角为θ,|•|=||•||•|cos<,>|=||•||•|cos(90°±θ)|=||•||•sinθ,即为以,为邻边的平行四边形的面积.故选A.【点评】本题考查向量的数量积公式、三角函数的诱导公式、平行四边形的面积公式.10.(5分)(2009•福建)函数f(x)=ax2+bx+c(a≠0)的图象关于直线对称.据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是()A.{1,2}B.{1,4}C.{1,2,3,4}D.{1,4,16,64}【考点】二次函数的性质.菁优网版权所有【专题】计算题;压轴题.【分析】根据函数f(x)的对称性,因为m[f(x)]2+nf(x)+p=0的解应满足y1=ax2+bx+c,y2=ax2+bx+c,进而可得到方程m[f(x)]2+nf(x)+p=0的根,应关于对称轴x=对称,对于D中4个数无论如何组合都找不到满足条件的对称轴,故解集不可能是D.【解答】解:∵f(x)=ax2+bx+c的对称轴为直线x=令设方程m[f(x)]2+nf(x)+p=0的解为f1(x),f2(x)则必有f1(x)=y1=ax2+bx+c,f2(x)=y2=ax2+bx+c那么从图象上看,y=y1,y=y2是一条平行于x轴的直线它们与f(x)有交点由于对称性,则方程y1=ax2+bx+c的两个解x1,x2要关于直线x=对称也就是说x1+x2=同理方程y2=ax2+bx+c的两个解x3,x4也要关于直线x=对称那就得到x3+x4=,在C中,可以找到对称轴直线x=2.5,也就是1,4为一个方程的解,2,3为一个方程的解所以得到的解的集合可以是{1,2,3,4}而在D中,{1,4,16,64}6找不到这样的组合使得对称轴一致,也就是说无论怎么分组,都没办法使得其中两个的和等于另外两个的和故答案D不可能故选D.【点评】本题主要考查二次函数的性质﹣﹣对称性,二次函数在高中已经作为一个工具来解决有关问题,在解决不等式、求最值时用途很大.二、填空题(共5小题,每小题4分,满分20分)11.(4分)(2009•福建)若=a+bi(i为虚数单位,a,b∈R),则a+b=2.【考点】复数代数形式的乘除运算;复数相等的充要条件.菁优网版权所有【专题】计算题.【分析】把所给的等式左边的式子,分子和分母同乘以分母的共轭复数,变形为复数的标准代数形式,根据两个复数相等的充要条件,得到a和b的值,得到结果.【解答】解:∵===1+i,∵=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故答案为:2【点评】本题考查复数的乘除运算,考查复数相等的充要条件,复数的加减乘除运算是比较简单的问题,在高考时有时会出现,若出现则是要我们一定要得分的题目.12.(4分)(2009•福建)某电视台举办青年歌手电视大奖赛,9位评委为参赛选手甲给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的a)无法看清,若记分员计算无误,则数字a=1.【考点】茎叶图.菁优网版权所有【分析】根据计分规则知记分员去掉一个最高分94和一个最低分88,余下7个数字的平均数是91,根据平均数的计算公式写出平均数的表示形式,得到关于a的方程,解方程即可.【解答】解:∵由题意知记分员在去掉一个最高分94和一个最低分88后,余下的7个数字的平均数是91,∴636+a=91×7=637,∴a=1故答案为:17【点评】本题通过茎叶图给出一组数据,对于一组数据,通常要求的是这组数据的众数,中位数,平均数,这样的问题可以出现在选择题或填空题,本题是逆用平均数公式,考查最基本的知识点.13.(4分)(2009•福建)过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,则p=2.【考点】抛物线的简单性质.菁优网版权所有【专题】计算题.【分析】抛物线的方程可求得焦点坐标,进而根据斜率表示出直线的方程,与抛物线的方程联立消去y,进而根据韦达定理表示出x1+x2和x1x2,进而利用配方法求得|x1﹣x2|,利用弦长公式表示出段AB的长求得p.【解答】解:由题意可知过焦点的直线方程为,联立有,∴x1+x2=3p,x1x2=∴|x1﹣x2|==又求得p=2故答案为2【点评】本题主要考查了抛物线的简单性质.涉及直线与抛物线的关系时,往往是利用韦达定理设而不求.14.(4分)(20

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功