近五年(2009—2013)全国各地中考数学试题——压轴题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

近五年(2009—2013)全国各地中考数学试题——压轴题(含解析)【41.2009长沙】26.如图半径分别为m,n(0<m<n)的两圆⊙O1和⊙O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,⊙O1与x轴,y轴分别切于点M,点N,⊙O2与x轴,y轴分别切于点R,点H.(1)求两圆的圆心O1,O2所在直线的解析式;(2)求两圆的圆心O1,O2之间的距离d;(3)令四边形PO1QO2的面积为S1,四边形RMO1O2的面积为S2.试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.解答:解:(1)由题意可知O1(m,m),O2(n,n),设过点O1,O2的直线解析式为y=kx+b,则有:(0<m<n),解得,∴所求直线的解析式为:y=x.(2)由相交两圆的性质,可知P、Q点关于O1O2对称.∵P(4,1),直线O1O2解析式为y=x,∴Q(1,4).如解答图1,连接O1Q.∵Q(1,4),O1(m,m),根据两点间距离公式得到:O1Q==又O1Q为小圆半径,即QO1=m,∴=m,化简得:m2﹣10m+17=0①如解答图1,连接O2Q,同理可得:n2﹣10n+17=0②由①,②式可知,m、n是一元二次方程x2﹣10x+17=0③的两个根,解③得:x=5±,∵0<m<n,∴m=5﹣,n=5+.∵O1(m,m),O2(n,n),∴d=O1O2==8.(3)假设存在这样的抛物线,其解析式为y=ax2+bx+c,因为开口向下,所以a<0.如解答图2,连接PQ.由相交两圆性质可知,PQ⊥O1O2.∵P(4,1),Q(1,4),∴PQ==,又O1O2=8,∴S1=PQ•O1O2=××8=;又S2=(O2R+O1M)•MR=(n+m)(n﹣m)=;∴==1,即抛物线在x轴上截得的线段长为1.∵抛物线过点P(4,1),Q(1,4),∴,解得,∴抛物线解析式为:y=ax2﹣(5a+1)x+5+4a,令y=0,则有:ax2﹣(5a+1)x+5+4a=0,设两根为x1,x2,则有:x1+x2=,x1x2=,∵在x轴上截得的线段长为1,即|x1﹣x2|=1,∴(x1﹣x2)2=1,∴(x1+x2)2﹣4x1x2=1,即()2﹣4()=1,化简得:8a2﹣10a+1=0,解得a=,可见a的两个根均大于0,这与抛物线开口向下(即a<0)矛盾,∴不存在这样的抛物线.【42.2009六盘水】25.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.考点:相似三角形的判定与性质;一元二次方程的应用;二次函数的最值;勾股定理;勾股定理的逆定理;菱形的性质;翻折变换(折叠问题)。专题:代数几何综合题;压轴题。分析:(1)由PQ∥BC时的比例线段关系,列一元一次方程求解;(2)如解答图1所示,过P点作PD⊥AC于点D,构造比例线段,求得PD,从而可以得到S的表达式,然后利用二次函数的极值求得S的最大值;(3)要点是利用(2)中求得的△AQP的面积表达式,再由线段PQ恰好把△ABC的面积平分,列出一元二次方程;由于此一元二次方程的判别式小于0,则可以得出结论:不存在这样的某时刻t,使线段PQ恰好把△ABC的面积平分;(4)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,求得时间t的值;最后求菱形的面积,值得注意的是菱形的面积等于△AQP面积的2倍,从而可以利用(2)中△AQP面积的表达式,这样可以化简计算.解答:解:∵AB=10cm,AC=8cm,BC=6cm,∴由勾股定理逆定理得△ABC为直角三角形,∠C为直角.(1)BP=2t,则AP=10﹣2t.∵PQ∥BC,∴,即,解得t=,∴当t=s时,PQ∥BC.(2)如答图1所示,过P点作PD⊥AC于点D.∴PD∥BC,∴,即,解得PD=6﹣t.S=×AQ×PD=×2t×(6﹣t)=﹣t2+6t=﹣(t﹣)2+,∴当t=s时,S取得最大值,最大值为cm2.(3)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,则有S△AQP=S△ABC,而S△ABC=AC•BC=24,∴此时S△AQP=12.由(2)可知,S△AQP=﹣t2+6t,∴﹣t2+6t=12,化简得:t2﹣5t+10=0,∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分.(4)假设存在时刻t,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t.如答图2所示,过P点作PD⊥AC于点D,则有PD∥BC,∴,即,解得:PD=6﹣t,AD=8﹣t,∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t.在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(8﹣t)2+(6﹣t)2=(2t)2,化简得:13t2﹣90t+125=0,解得:t1=5,t2=,∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=.由(2)可知,S△AQP=﹣t2+6t∴S菱形AQPQ′=2S△AQP=2×(﹣t2+6t)=2×[﹣×()2+6×]=cm2.所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为cm2.点评:本题是非常典型的动点型综合题,全面考查了相似三角形线段比例关系、菱形的性质、勾股定理及其逆定理、一元一次方程的解法、一元二次方程的解法与判别式、二次函数的极值等知识点,涉及的考点众多,计算量偏大,有一定的难度.本题考查知识点非常全面,是一道测试学生综合能力的好题.【43.2009攀枝花】23.如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=.(1)求过A.C.D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.考点:二次函数综合题。专题:动点型。分析:(1)由菱形ABCD的边长和一角的正弦值,可求出OC.OD.OA的长,进而确定A.C.D三点坐标,通过待定系数法可求出抛物线的解析式.(2)首先由A.B的坐标确定直线AB的解析式,然后求出直线AB与抛物线解析式的两个交点,然后通过观察图象找出直线y1在抛物线y2图象下方的部分.(3)该题的关键点是确定点P的位置,△APE的面积最大,那么S△APE=AE×h中h的值最大,即点P离直线AE的距离最远,那么点P为与直线AB平行且与抛物线有且仅有的唯一交点.解答:解:(1)∵四边形ABCD是菱形,∴AB=AD=CD=BC=5,sinB=sinD=;Rt△OCD中,OC=CD•sinD=4,OD=3;OA=AD﹣OD=2,即:A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0);设抛物线的解析式为:y=a(x+2)(x﹣3),得:2×(﹣3)a=4,a=﹣;∴抛物线:y=﹣x2+x+4.(2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣;由(1)得:y2=﹣x2+x+4,则:,解得:,;由图可知:当y1<y2时,﹣2<x<5.(3)∵S△APE=AE•h,∴当P到直线AB的距离最远时,S△ABC最大;若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时,﹣x+b=﹣x2+x+4,且△=0;求得:b=,即直线L:y=﹣x+;可得点P(,).由(2)得:E(5,﹣),则直线PE:y=﹣x+9;则点F(,0),AF=OA+OF=;∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=.综上所述,当P(,)时,△PAE的面积最大,为.点评:该题考查的是函数的动点问题,其中综合了特殊四边形、图形面积的求法等知识,找出动点问题中的关键点位置是解答此类问题的大致思路.【44.2009山西】26.综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A.B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B.D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A.P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.考点:二次函数综合题。解答:解:(1)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3.∵点A在点B的左侧,∴A.B的坐标分别为(﹣1,0),(3,0).当x=0时,y=3.∴C点的坐标为(0,3)设直线AC的解析式为y=k1x+b1(k1≠0),则,解得,∴直线AC的解析式为y=3x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4).(2)抛物线上有三个这样的点Q,①当点Q在Q1位置时,Q1的纵坐标为3,代入抛物线可得点Q1的坐标为(2,3);②当点Q在点Q2位置时,点Q2的纵坐标为﹣3,代入抛物线可得点Q2坐标为(1+,﹣3);③当点Q在Q3位置时,点Q3的纵坐标为﹣3,代入抛物线解析式可得,点Q3的坐标为(1﹣,﹣3);综上可得满足题意的点Q有三个,分别为:Q1(2,3),Q2(1+,﹣3),Q3(1﹣,﹣3).(3)点B作BB′⊥AC于点F,使B′F=BF,则B′为点B关于直线AC的对称点.连接B′D交直线AC与点M,则点M为所求,过点B′作B′E⊥x轴于点E.∵∠1和∠2都是∠3的余角,∴∠1=∠2.∴Rt△AOC~Rt△AFB,∴,由A(﹣1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3,∴AC=,AB=4.∴,∴BF=,∴BB′=2BF=,由∠1=∠2可得Rt△AOC∽Rt△B′EB,∴,∴,即.∴B′E=,BE=,∴OE=BE﹣OB=﹣3=.∴B′点的坐标为(﹣,).设直线B′D的解析式为y=k2x+b2(k2≠0).∴,解得,∴直线B'D的解析式为:y=x+,联立B'D与AC的直线解析式可得:,解得,∴M点的坐标为(,).【45.2009黄石】25.(本小题满分10分)已知抛物线1C的函数解析式为23(0)yaxbxab,若抛物线1C经过点(0,3),方程230axbxa的两根为1x,2x,且124xx。(1)求抛物线1C的顶点坐标.(2)已知实数0x,请证明:1xx≥2,并说明x为何值时才会有12xx.(3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C,设1(,)Amy,2(,)Bny是2C上的两个不同点,且满足:090AOB,0m,0n.请你用含有m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式。(参考公式:在平面直角坐标系中,若11(,)Pxy,22(,)Qxy,则P,Q两点间的距离为222121()()xxyy)【考点】二次函数综合题.【专题】压轴题;配方法.【分析】(1)求抛物线的顶点坐标,需要先求出抛物线的解析式,即确定待定系数a、b的值.已知抛物线图

1 / 107
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功