指数函数与对数函数§4.5对数的运算•学习要求1.理解两个基本对数和两个基本对数恒等式.2.了解积、商、幂的对数运算法则,并能应用.•学法指导(1)预习对数的运算;(2)本学时重点是了解积、商、幂对数运算的法则,难点是推导这些法则的依据和过程。要有化归的数学思想,可以与同伴的合作探究和归纳,注意记忆结论,自我纠错.课堂探究1.探究问题【探究】设,则∵∴,即这个推导过程对吗?这里a,M,N有没有条件限制?解推导正确,a,M,N有条件限制,分别是:loglog,axMyN,.xyaMaNxyxyaaaMNlogaxyMNlogloglogaaaMNMN0,1;0;0.aaMN2.知识链接积、商、幂对数运算的法则:(2)语言叙述:积的对数等于对数的和,商的对数等于对数的差,幂的对数等于指数与底的对数之积.(1)公式:当且时,1a0aNMNMaaaloglog)(log(,,0,1)aMNaNMNMaaalogloglog(,,0,1)aMNaMbMabaloglog)R,0(bM3.拓展练习:例1证明:.NMNMaaalogloglog证明:设x=logaM,y=logaN,则ax=M,ay=N.NMNMNMyxNMaaaaaaayxyxloglogloglog即例2判断正误,并说明理由.)8lg()8lg()]8()8lg[((1)(2)(3)(4)(5)49log9log)99(log333110lg1001000lg100lg1000lg881log9log)819(log3331)5(log5log25log25255答案:都不正确.由积、商、幂对数运算的法则可知正确的分别是:8lg8lg)]8()8lg[((1)(2)(3)(4)(5)18log)99(log3323100lg1000lg681log9log)819(log33325log25log25log52554.当堂训练:(1)下列等式成立的是()A.B.C.D.4log8log)48(log22248log4log8log2222log38log224log8log)48(log222C(2)等于()A.0B.4C.4ND.-24log4log22NNB(3)等于()A.2B.-1C.-2D.134log23log44D(4)计算下列各题.①②)10(31log3log2aaaaa且23loglogaaaa)10(aa且答案:①②231log)3(log2aaa1loglog32aaaa第二学时学法指导:(1)回顾对数的概念及积、商、幂的运算法则,并在理解的基础上记忆.(2)本学时的重点是对数运算法则的应用。要注意定义域的要求,公式的逆向运算.同学之间相互纠错,加深对法则的理解与记忆.课堂探究1.探究问题:【探究1】公式:;;对一切实数M,N都成立吗?【探究2】成立的条件是什么?NMNMaaaloglog)(logNMNMaaalogloglog277log2logxx答案:【探究1】必须M0,N0.【探究2】x0MbMabaloglog2.知识链接:(2)积、商、幂对数运算的法则:当且时:1a0aNMNMaaaloglog)(log(,,0,1)aMNaNMNMaaalogloglog(,,0,1)aMNaMbMabaloglog)R,0(bM(1)对数的基本公式:,.01loga1logaa,例1用logax,logay,logaz,表示下列各式:①②zxyalog32logzyxazyxzxyzxyaaaaaaloglogloglogloglogzyxzyxzyxaaaaaaalog31log21log2loglogloglog3232答案:①②3.拓展练习:例2.求下列各式的值:①②195142log4log)24(log52725725210lg100lg525)24(log5725100lg答案:①②4.当堂训练:(1)等于()A.2B.1C.-1D.-2(2),x的值等于()A.-1B.C.4D.1(3)已知,那么用a表示是()A.a-2B.5a-2C.3a-(1+a)2D.3a-a2(4)计算:5lg24lg3log81log43x4132a33log82log635log2114log565log222AAB2114351565log2原式•谢谢!