ROADM技术简介

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

摘要:阐述了可重构型光分插复用设备(ROADM)进入波分网络的背景,并对ROADM的三种主要技术进行了简要介绍。最后提出未来ROADM的发展方向,即ROADM光层调度+OTN电层调度组合解决方案,以及中兴通讯推出的适应市场发展的设备功能类型。1引言随着IPTV、三重播放、VoIP等各种新型电信业务的兴起,人们发现这些以IP为承载协议的业务已经迅速遍及电信各个领域,业务网络的IP化和承载网络的分组化转型已经成为一个不可逆转的潮流。在这种趋势下,运营商的整个网络架构也在发生转变,业务的融合期待着光层作为基础承载层的融合,使其成为更加适宜于承载IP/MPLS以及电信级以太网业务的分组传送网。这些新型的电信业务与传统的电信业务相比,具有更高的动态特性和不可预测性,因此需要传输承载网提供更高的灵活性。超长距密集波分系统的成熟,使得网络业务的真正瓶颈从带宽建设转移到带宽管理上,在核心的网络节点上,往往需要处理数十个甚至上百个波长,而超长距的传输能力,使得更多的节点需要具备更多的上下波长能力。作为基础承载网络,在更为激烈的市场竞争环境下,需要更快的业务提供以及各种层面的网络保护和恢复能力。因此,作为传统物理层的光层组网,也要适应新一代承载网络的分组化、业务化、带宽大颗粒化、动态化的组网需求。DWDM密集波分复用系统是当前最常见的光层组网技术,通过复用/解复用器可以实现数十波甚至上百波的传送能力,但是当前的波分复用系统,其本质上还是一个点到点的线路系统,大多数的光层组网只能通过终端站(TM)实现的光线路系统构建。稍后出现的OADM光分插复用器,逐渐迈出了从点到点组网向环网的演进。但是由于OADM有限的功能,通常只能上下固定数目和波长的光通道,并没有真正实现灵活的光层组网。因此,从某种意义上说,早期的波分复用系统并没有实现真正意义上的光层组网,难以满足业务网络IP化和分组化的要求,例如网络的业务调度能力、可靠性、可维护性、可扩展性、可管理性等。这种情况直到ROADM的出现才得以改善。为了满足IP网络的需求,基础承载网的建设逐渐采用一种以可重构光分插复用设备(ROADM)为代表的光层重构技术,为基础承载网的建设提供了全新的思路。2ROADM的主要技术简介ROADM是一种类似于SDHADM光层的网元,它可以在一个节点上完成光通道的上下路(Add/Drop),以及穿通光通道之间的波长级别的交叉调度。它可以通过软件远程控制网元中的ROADM子系统实现上下路波长的配置和调整。目前,ROADM子系统常见的有三种技术:平面光波电路(PlanarLightwaveCircuits,PLC)、波长阻断器(WavelengthBlocker,WB)、波长选择开关(WavelengthSelectiveSwitch,WSS)。2.1平面光波电路(PLC)平面光波电路ROADM是一种基于硅工艺的集成电路,可以集成多种器件,如光栅、分路器以及光开关等。它通过集成的阵列光波导(AWG)实现波长复用和解复用,集成的光开关实现波长直通或阻断并加入(Block-and-Add),可变光衰耗器(VOA)实现每通道的光功率动态均衡。PLCROADM上下路的通道是彩色光,这意味着只有预定义的彩色波长可以在每个端口上下,并可配合可调滤波器和可调激光器使用。由于PLC的集成特性,使其成为低成本的ROADM解决方案之一。图1所示为PLC的结构示意图。图1PLC结构示意图优点:复用器/解复用器技术成熟可靠,节点内部插损较小,上下路波长较多时成本较低,便于升级到OXC。缺点:模块化结构差,初期配置成本高,大容量交叉矩阵可靠性有待提高。2.2波长阻断器(WB)波长阻断器用阻断下路波长通过来实现功能,它可以支持较多的光通道数和较小的通道间隔,具有较低的色散,并可实现多个器件的级联,易于实现光谱均衡。但波长阻断器需要额外的上下路模块来构建系统,上下路配合可调滤波器和可调激光器。从本质上讲,WB是一个二维器件,通常在构建系统中由多个分立器件构成,体积较大,但可以支持100GHz和50GHz的波道间隔,并且技术成熟,成本较低,因此适合用于LH和ULH系统。图2所示的是广播/选取结构示意图。图2广播/选取结构示意图优点:结构简单,模块化程度好,预留升级端口时可支持灵活扩展升级功能,上下路波长较少时成本低,支持广播业务,具备通道功率均衡能力。缺点:上下路波长较多时成本较高(独立的可调谐滤波器成本高),不易过渡至OXC。2.3波长选择开关(WSS)波长选择交换器(WSS)是近年来发展迅速的ROADM子系统技术。WSS基于MEMS光学平台,具有频带宽、色散低,并且同时支持10/40Gbit/s光信号的特点和内在的基于端口的波长定义(Colorless)特性。采用自由空间光交换技术,上下路波数少,但可以支持更高的维度,集成的部件较多,控制复杂。基于WSS的ROADM逐渐成为4度以上ROADM的首选技术。图3、图4所示的是波长选择开关上下路结构示意图。图3波长选择开关上路结构示意图图4波长选择开关下路结构示意图优点:结构简单,端口指配灵活,波长扩展及方向扩展性较好,易于过渡到OXC。缺点:上路类型节点成本较高,下路类型不支持业务广播功能。三种ROADM子系统技术,各具特点,采用何种技术,主要视应用而定。根据对北美运营商的统计,超过70%的需求仍然是2维的应用,而只有约10%的ROADM节点,将会采用4维或以上的节点。因此,基于WB/PLC的ROADM,可以充分利用现有的成熟技术,对网络的影响最小,易于实现从FOADM到2维ROADM的升级,具有极高的成本效益。而基于WSS的ROADM,可以在所有方向提供波长粒度的信道,远程可重配置所有直通端口和上下端口,适宜于实现多方向的环间互联和构建Mesh网络。因此,三种技术各有所长,在不同的网络应用中都有相应的地位。3ROADM未来的演进方向基于全光系统的ROADM同样也有明显的劣势:(1)只能以波长为颗粒进行处理,不能对子波长业务(如波长为10G系统中的GE和2.5G的业务)进行交换/汇聚等处理,网络灵活性和带宽利用率受到一定限制。(2)由于传输物理因素,全光传输距离受到一定限制,使得在骨干网应用中,业务流量和流向并不能任意变化,仍然需要精确地设计和规划,增加了网络规划的复杂性。德国电信也明确指出,传输物理限制是影响ROADM组网的重要原因。基于ROADM目前存在的这些不足,业界提出增加电交叉领域。于是产生了ROADM+OTN的设备形态。目前的典型应用是,对于10G以上(含10G)的业务,节点采用全光的方式进行直通或者上下,对于GE/2.5G的业务,节点先将其下路到电域交叉板,再进行基于2.5G颗粒的电域分插和复用。这种分插复用模式有点类似于ADM中的VC-4和VC-12的两级交叉,只是第一级采用全光的处理。目前,已有设备商推出相关产品,并在城域范围内有一定应用。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功