11.一个角的余角是30º,则这个角的大小是.2.一个角与它的补角之差是20º,则这个角的大小是.3.如图①,如果∠=∠,那么根据可得AD∥BC(写出一个正确的就可以).4.如图②,∠1=82º,∠2=98º,∠3=80º,则∠4=度.5.如图③,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28º,则∠BOE=度,∠AOG=度.6.时钟指向3时30分时,这时时针与分针所成的锐角是.7.如图④,AB∥CD,∠BAE=120º,∠DCE=30º,则∠AEC=度.8.把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′=70º,则∠B′OG=.9.如图⑥中∠DAB和∠B是直线DE和BC被直线所截而成的,称它们为角.10.如图⑦,已知AD//BC,∠1=∠2,∠A=112°,且BD⊥CD,则∠ABC=____,∠C=_____.图⑦11.如图,,8,6,10,BCACCBcmACcmABcm那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________.12.观察图中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角.13.如图,已知CD⊥AB于D,EF⊥AB于F,∠DGC=105°,∠BCG=75°,则∠1+∠2=____度.14.如图,AB∥CD,∠BAE=120º,∠DCE=30º,则∠AEC=度。15.如图,按虚线剪去长方形纸片相邻的两个角,并使∠1=1200,AB⊥BC,则∠2的度数为。16.下列正确说法:①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等的个数是()A.1,B.2,C.3,D.4相交线与平行线经典练习2BDE13ACF217.如图,∠B=∠D,∠1=∠2.求证:AB∥CD.【证明】∵∠1=∠2(已知),∴∥(),∴∠DAB+∠=180°().∵∠B=∠D(已知),∴∠DAB+∠=180°(),∴AB∥CD().18.完成推理填空:如图:直线AB、CD被EF所截,若已知AB//CD,求证:∠1=∠C。请你认真完成下面填空。证明:∵AB//CD(已知),∴∠1=∠(两直线平行,)又∵∠2=∠3,()∴∠1=∠C()。19.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,则B____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE.20.如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.证明:∵AB∥CD,∴∠MEB=∠MFD()又∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即∠MEP=∠______∴EP∥_____.()21.完成推理填空:如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE。请你认真完成下面的填空。证明:∵∠A=∠F(已知)∴AC∥DF(________________)∴∠D=∠(_____________)又∵∠C=∠D(已知),∴∠1=∠C(等量代换)∴BD∥CE()。22.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC(已知),∴AD∥______(2)∵∠3=∠5(已知),∴AB∥____,(______________________)(3)∵∠ABC+∠BCD=180°(已知),∴______∥_______,(___________________________)323.如图,EF∥AD,∠1=∠2,∠BAC=70°。将求∠AGD的过程填写完整。解:∵EF∥AD()∴∠2=。()∵∠1=∠2()∴∠1=∠3。()∴AB∥。()∴∠BAC+=180°。()∵∠BAC=70°,()∴∠AGD=。24.如图,完成下列推理过程已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO证明:CF∥DO证明:∵DE⊥AO,BO⊥AO(已知)∴∠DEA=∠BOA=900()∵DE∥BO()∴∠EDO=∠DOF()又∵∠CFB=∠EDO()∴∠DOF=∠CFB()∴CF∥DO()25.⑴如图,已知∠1=∠2求证:a∥b.⑵直线//ab,求证:12.26.如右图,AB//CD,AD//BE,试说明∠ABE=∠D.CBAFEDO427.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.28.如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.29.如图,已知ABC,ADBC于D,E为AB上一点,EFBC于F,//DGBA交CA于G.求证12.