1全等三角形知识点梳理一基本概念1、全等的理解:全等的图形必须满足:(1)形状相同的图形(2)大小相等的图形;即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形2、全等三角形的性质(1)全等三角形对应边相等(2)全等三角形对应角相等3、全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS)(边边边)(2)两角和它们的夹边对应相等的两个三角形全等(ASA)(角边角)(3)两角和其中一角的对边对应相等的两个三角形全等(AAS)(角角边)(4)两边和它们的夹角对应相等的两个三角形全等(SAS)(边角边)(5)斜边和一条直角边对应相等的两个直角三角形全等4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上二、灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。3、要善于灵活选择适当的方法判定两个三角形全等。(1)已知条件中有两角对应相等,可找(边)@夹边相等(ASA)@任一组等角的对边相等(AAS)(2)已知条件中两边对应相等,可找(角或边)@夹角相等(SAS)@第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找(角或边)@任一组角相等(AAS或ASA)@夹等角的另一组边相等(SAS)[知识要点]一、全等三角形1.判定和性质2一般三角形直角三角形判定边角边(SAS)、角边角(ASA)角角边(AAS)、边边边(SSS)具备一般三角形的判定方法斜边和一条直角边对应相等(HL)性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;②全等三角形面积相等.2.证题的思路:)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AASASAASAAASSASAASSSSHLSAS性质:1、全等三角形的对应角相等、对应边相等。2、全等三角形的对应边上的高对应相等。3、全等三角形的对应角平分线相等。4、全等三角形的对应中线相等。5、全等三角形面积相等。6、全等三角形周长相等。(以上可以简称:全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。(SSS)8、两边和它们的夹角对应相等的两个三角形全等。(SAS)9、两角和它们的夹边对应相等的两个三角形全等。(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。而全等的判定却刚好相反。2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。3、当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。4、用在实际中,一般我们用全等三角形测等距离。以及等角,用于工业和军事。有一定帮助。5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧:一般来说考试中线段和角相等需要证明全等。因此我们可以来采取逆思维的方式。来想要证全等,则需要什么条件。另一种则要根据题目中给出的已知条件,求出有关信息。然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。3(二)实例点拨例1(2010淮安)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE。求证:AE=BD。例2已知:AB=AC,EB=EC,AE的延长线交BC于D,试证明:BD=CD例3.(2009·洛江中考)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:AB=DE.17、(2010·潼南中考)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.例4、(2009·吉林中考)如图,,ABACADBCDADAEABDAEDEF于点,,平分交于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.EBCADECDBAACBDEFG14234要点二、角平分线的性质与应用例5、(2009·温州中考)如图,OP平分AOB,PAOA,PBOB,垂足分别为A,B.下列结论中不一定成立的是()A.PAPBB.PO平分APBC.OAOBD.AB垂直平分OP例6、(2009·厦门中考)如图,在ΔABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,则点D到直线AB的距离是_______厘米。【实弹射击】1、如图,AB=AC,AE=AD,BD=CE,求证:△AEB≌△ADC。2、如图:AC与BD相交于O,AC=BD,AB=CD,求证:∠C=∠B3、如图,已知AB=CD,AD=CB,E、F分别是AB,CD的中点,且DE=BF,说出下列判断成立的理由.①△ADE≌△CBF②∠A=∠C4、已知:BECF在同一直线上,AB∥DE,AC∥DF,并且BE=CF。求证:△ABC≌△DEFCABDE第1题图OACDB第2题图ADBCFE第3题图FEDCBA第4题图5FEDCBA5、如图,已知:AB⊥BC于B,EF⊥AC于G,DF⊥BC于D,BC=DF.求证:AC=EF.6、如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。(1)∠DBH=∠DAC;(2)ΔBDH≌ΔADC。7、如图,已知ABC△为等边三角形,D、E、F分别在边BC、CA、AB上,且DEF也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.8、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。9、如图所示,P为∠AOB的平分线上一点,PC⊥OA于C,∠OAP+∠OBP=180°,若OC=4cm,求AO+BO的值.FGEDCBAABCDEHPDACBO610、如图:四边形ABCD中,AD∥BC,AB=AD+BC,E是CD的中点,求证:AE⊥BE。11、如图,ABCD是正方形,点G是BC上的任意一点,DEAG⊥于E,BFDE∥,交AG于F.求证:AFBFEF.ADBCEDCBAEFG