等比数列的性质总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

等比数列性质1.等比数列的定义:*12,nnaqqnnNa0且,q称为公比2.通项公式:11110,0nnnnaaaqqABaqABq,首项:1a;公比:q推广:nmnmaaq,从而得nmnmaqa或nnmmaqa3.等比中项(1)如果,,aAb成等比数列,那么A叫做a与b的等差中项.即:2Aab或Aab注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列na是等比数列211nnnaaa4.等比数列的前n项和nS公式:(1)当1q时,1nSna(2)当1q时,11111nnnaqaaqSqq11''11nnnaaqAABABAqq(,,','ABAB为常数)5.等比数列的判定方法(1)用定义:对任意的n,都有11(0)nnnnnaaqaqqaa或为常数,{}na为等比数列(2)等比中项:211nnnaaa(11nnaa0){}na为等比数列(3)通项公式:0nnaABAB{}na为等比数列(4)前n项和公式:'',,','nnnnSAABSABAABAB或为常数{}na为等比数列6.等比数列的证明方法依据定义:若*12,nnaqqnnNa0且或1nnaqa{}na为等比数列7.注意(1)等比数列的通项公式及前n和公式中,涉及到5个元素:1a、q、n、na及nS,其中1a、q称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设项的技巧,一般可设为通项;11nnaaq如奇数个数成等差,可设为…,22,,,,aaaaqaqqq…(公比为q,中间项用a表示);8.等比数列的性质(1)当1q时①等比数列通项公式1110nnnnaaaqqABABq是关于n的带有系数的类指数函数,底数为公比q②前n项和111111''1111nnnnnnaqaaqaaSqAABABAqqqq,系数和常数项是互为相反数的类指数函数,底数为公比q(2)对任何m,n*N,在等比数列{}na中,有nmnmaaq,特别的,当m=1时,便得到等比数列的通项公式.因此,此公式比等比数列的通项公式更具有一般性。(3)若m+n=s+t(m,n,s,t*N),则nmstaaaa.特别的,当n+m=2k时,得2nmkaaa注:12132nnnaaaaaa(4)列{}na,{}nb为等比数列,则数列{}nka,{}nka,{}kna,{}nnkab{}nnab(k为非零常数)均为等比数列.(5)数列{}na为等比数列,每隔k(k*N)项取出一项(23,,,,mmkmkmkaaaa)仍为等比数列(6)如果{}na是各项均为正数的等比数列,则数列{log}ana是等差数列(7)若{}na为等比数列,则数列nS,2nnSS,32,nnSS,成等比数列(8)若{}na为等比数列,则数列12naaa,122nnnaaa,21223nnnaaa成等比数列(9)①当1q时,②当1q0时,110{}0{}{nnaaaa,则为递增数列,则为递减数列,110{}0{}{nnaaaa,则为递减数列,则为递增数列③当q=1时,该数列为常数列(此时数列也为等差数列);④当q0时,该数列为摆动数列.(10)在等比数列{}na中,当项数为2n(n*N)时,1SSq奇偶,.(11)若{}na是公比为q的等比数列,则nnmnmSSqS

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功