常见递推数列通项公式的求法典型例题及习题【典型例题】[例1]bkaann1型。(1)1k时,}{1nnnabaa是等差数列,)(1banban(2)1k时,设)(1makmann∴mkmkaann1比较系数:bmkm∴1kbm∴}1{kban是等比数列,公比为k,首项为11kba∴11)1(1nnkkbakba∴1)1(11kbkkbaann[例2])(1nfkaann型。(1)1k时,)(1nfaann,若)(nf可求和,则可用累加消项的方法。例:已知}{na满足11a,)1(11nnaann求}{na的通项公式。解:∵111)1(11nnnnaann∴nnaann1111112121nnaann213132nnaann……312123aa21112aa对这(1n)个式子求和得:naan111∴nan12(2)1k时,当bannf)(则可设)()1(1BAnakBnAann∴ABkAnkkaann)1()1(1∴bABkaAk)1()1(解得:1kaA,2)1(1kakbB∴}{BAnan是以BAa1为首项,k为公比的等比数列∴11)(nnkBAaBAna∴BAnkBAaann11)(将A、B代入即可(3)nqnf)((q0,1)等式两边同时除以1nq得qqaqkqannnn111令nnnqaC则qCqkCnn11∴}{nC可归为bkaann1型[例3]nnanfa)(1型。(1)若)(nf是常数时,可归为等比数列。(2)若)(nf可求积,可用累积约项的方法化简求通项。例:已知:311a,11212nnanna(2n)求数列}{na的通项。解:1235375325212321212122332211nnnnnnnaaaaaaaaaannnnnn∴1211231nnaan[例4]11nnnamamka型。考虑函数倒数关系有)11(11makann∴mkakann111令nnaC1则}{nC可归为bkaann1型。练习:1.已知}{na满足31a,121nnaa求通项公式。解:设)(21mamannmaann21∴1m∴}1{1na是以4为首项,2为公比为等比数列∴1241nna∴121nna2.已知}{na的首项11a,naann21(*Nn)求通项公式。解:)1(21naann)2(221naann)3(232naann……2223aa1212aannnaan21)]1(21[2∴12nnan3.已知}{na中,nnanna21且21a求数列通项公式。解:)1(231422413211122332211nnnnnnnnnnaaaaaaaaaannnnnn∴)1(21nnaan∴)1(4nnan4.数列}{na中,nnnnnaaa11122,21a,求}{na的通项。解:nnnnnaaa111221∴112111nnnaa设nnab1∴1121nnnbb∴nnnbb211∴nnnbb21112121nnnbb23221nnnbb……32321bb21221bbnnbb212121321nn2121211])21(1[2112∴nnnnb212212121∴122nnna5.已知:11a,2n时,12211naann,求}{na的通项公式。解:设])1([211BnAaBAnannBAAnaann212121211∴12121221BAA解得:64BA∴3641a∴}64{nan是以3为首项,21为公比的等比数列∴1)21(364nnna∴64231nann【模拟试题】1.已知}{na中,31a,nnnaa21,求na。2.已知}{na中,11a,231nnaa(2n)求na。3.已知}{na中,11a,nnnaa221(2n)求na。4.已知}{na中,41a,144nnaa(2n)求na。5.已知}{na中,11a,其前n项和nS与na满足1222nnnSSa(2n)(1)求证:}1{nS为等差数列(2)求}{na的通项公式6.已知在正整数数列}{na中,前n项和nS满足2)2(81nnaS(1)求证:}{na是等差数列(2)若nb3021na,求}{nb的前n项和的最小值【试题答案】1.解:由nnnaa21,得112nnnaa∴112nnnaa2212nnnaa……212aa∴2221)21(211nnnaa∴12221nnnaa2.解:由231nnaa得:)1(311nnaa∴3111nnaa即}1{na是等比数列113)1(1nnaa∴13213)1(111nnnaa3.解:由nnnaa221得12211nnnnaa∴}2{nna成等差数列,)1(212nann∴122nnnna4.解:nnnnaaaa)2(24221∴2121)2(2211nnnnaaaa(1n)∴2121211nnaa(1n)设21nnab即)1(211nbbnn∴}{nb是等差数列∴221)1(21211nnaan22nan5.解:(1)12221nnnnSSSS∴112nnnnSSSS2111nnSS∴}1{nS是首项为1,公差为2的等差数列∴121nSn(2)121nSn∴)2(384211212)121(222nnnnnan又∵11a∴)2(3842112nnnnan6.解:(1)2111)2(81aSa∴21a2n时,2121)2(81)2(81nnnnnaaSSa整理得:0)4)((11nnnnaaaa∵}{na是正整数数列∴01nnaa∴41nnaa∴}{na是首项为2,公差为4的等差数列∴24nan(2)31230)24(21nnbn∴}{nb为等差数列∴nnSn302∴当15n时,nS的最小值为2251530152