第1页共20页2012年湖北省武汉市中考数学试卷一.选择题(共12小题)1.(2012武汉)在2.5,﹣2.5,0,3这四个数种,最小的数是()A.2.5B.﹣2.5C.0D.32.(2012武汉)若在实数范围内有意义,则x的取值范围是()A.x<3B.x≤3C.x>3D.x≥33.(2012武汉)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.4.(2012武汉)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A.标号小于6B.标号大于6C.标号是奇数D.标号是35.(2012武汉)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是()A.﹣2B.2C.3D.16.(2012武汉)某市2012年在校初中生的人数约为23万.数230000用科学记数法表示为()A.23×104B.2.3×105C.0.23×103D.0.023×1067.(2012武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7B.8C.9D.108.(2012武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A.B.C.D.9.(2012武汉)一列数a1,a2,a3,…,其中a1=,an=(n为不小于2的整数),则a4的值为()A.B.C.D.10.(2012武汉)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()第2页共20页A.2.25B.2.5C.2.95D.311.(2012武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③12.(2012武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11﹣或1+二.填空题(共4小题)13.tan60°=.14.(2012武汉)某校九(1)班8名学生的体重(单位:kg)分别是39,40,43,43,43,45,45,46.这组数据的众数是.15.(2012武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于x轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.第3页共20页16.(2012武汉)在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是.三.解答题(共9小题)17.(2012武汉)解方程:.18.(2012武汉)在平面直角坐标系中,直线y=kx+3经过点(﹣1,1),求不等式kx+3<0的解集.19.(2012武汉)如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.20.(2012武汉)一个口袋中有4个相同的小球,分别与写有字母A,B,C,D,随机地抽出一个小球后放回,再随机地抽出一个小球.(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;(2)求两次抽出的球上字母相同的概率.21.(2012武汉)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,3),(﹣4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),在将线段A1B1绕远点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.(1)画出线段A1B1,A2B2;(2)直接写出在这两次变换过程中,点A经过A1到达A2的路径长.22.(2012武汉)在锐角三角形ABC中,BC=4,sinA=,(1)如图1,求三角形ABC外接圆的直径;(2)如图2,点I为三角形ABC的内心,BA=BC,求AI的长.第4页共20页23.(2012武汉)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?24.(2012武汉)已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点M,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).第5页共20页25.(2012武汉)如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.2013年武汉市初中毕业生学业考试数学试卷第I卷(选择题共30分)一、选择题(共12小题,每小题3分,共36分)1.下列各数中,最大的是()A.-3B.0C.1D.2第6页共20页2.式子在实数范围内有意义,则x的取值范围是()A.1B.≥1C.≤-1D.-13.不等式组的解集是()A.-2≤≤1B.-21C.≤-1D.≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球.B.摸出的三个球中至少有一个球是白球.C.摸出的三个球中至少有两个球是黑球.D.摸出的三个球中至少有两个球是白球.5.若,是一元二次方程的两个根,则的值是()A.-2B.-3C.2D.36.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的[来~源&:中%^教@网]度数是()A.18°B.24°C.30°D.36°[来源~%:zz#s*tep.c&om]7.如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A.B.C.D.8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。图(1)与图(2)是整理数据后绘制的两幅不完整的统计图。以下结论不正确...的是()A.由这两个统计图可知喜欢“科普常识”的学生有90人.B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360个.C.由这两个统计图不能确定喜欢“小说”的人数.D.在扇形统计图中,“漫画”所在扇形的圆心角为72°.10.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=°,∠ECD=°,⊙B的半径为R,则的长度是()1xxxxx0102xxxxxx1x2x0322xx21xxxyDE第9题图(2)第9题图(1)30%其它10%科普常识漫画小说3060书籍其它科普常识漫画小说人数第7页共20页A.B.C.D.第II卷(非选择题共84分)二、填空题(共4小题,每小题3分,共12分)11.计算=.12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是.13.太阳的半径约为696000千米,用科学记数法表示数696000为.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设秒后两车间的距离为千米,关于的函数关系如图所示,则甲车的速度是米/秒.15.如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数的图象上,则k的值等于.16.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题(共9小题,共72分)17.(本题满分6分)解方程:.18.(本题满分6分)直线经过点(3,5),求关于的不等式≥0的解集.19.(本题满分6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.9090Rx9090Ry180180Rx180180Ry45cosxyyx220200100x/(秒)y/(米)500ABCD第14题图O900)0(xxkyxx332bxy2xbx2EPABCD第10题图第16题图HGFEDCBA第19题图ABCDEF第8页共20页20.(本题满分7分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.21.(本题满分7分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△C;平移△ABC,若A的对应点的坐标为(0,4),画出平移后对应的△;(2)若将△C绕某一点旋转可以得到△,请直接写出旋转中心的坐标;(3)在轴上有一点P,使得PA+PB的值最小,请直[接写出点P的坐标22.(本题满分8分)如图,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°,求证:;(2)如图②,若,求的值.23.(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度/℃……-4-20244.5……植物每天高度增长量/mm……414949412519.75……由这些数据,科学家推测出植物每天高度增长量是温度的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;11BA2A222CBA11BA222CBAxABAPAC32524sinBPCPABtanxyyxxyACBO第21题图–1–2–3–4–512345–1–2–3–4–512345OP第22题图①CBA第22题图②OPCBA第9页共20页(2)温度为多少时,这种植物每天高度的增长量最大?(